An introduction to numerical methods: a MATLAB approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Florida
CRC Press
[2019]
|
Ausgabe: | Fourth edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes index |
Beschreibung: | xv, 615 Seiten Diagramme |
ISBN: | 9781138093072 1138093076 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV045096502 | ||
003 | DE-604 | ||
005 | 20191113 | ||
007 | t | ||
008 | 180720s2019 |||| |||| 00||| eng d | ||
020 | |a 9781138093072 |9 978-1-138-09307-2 | ||
020 | |a 1138093076 |9 1138093076 | ||
035 | |a (OCoLC)1082322253 | ||
035 | |a (DE-599)BVBBV045096502 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-862 |a DE-739 |a DE-634 | ||
084 | |a SK 900 |0 (DE-625)143268: |2 rvk | ||
100 | 1 | |a Kharab, Abdelwahab |e Verfasser |0 (DE-588)1146338872 |4 aut | |
245 | 1 | 0 | |a An introduction to numerical methods |b a MATLAB approach |c Dr. Abdelwahab Kharab (Abu Dhabi University), Professor Ronald B. Guenther (Oregon State University) |
246 | 1 | 3 | |a Numerical methods |
246 | 1 | 0 | |a Numerical methods |
250 | |a Fourth edition | ||
264 | 1 | |a Boca Raton, Florida |b CRC Press |c [2019] | |
300 | |a xv, 615 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes index | ||
650 | 0 | 7 | |a MATLAB |0 (DE-588)4329066-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
653 | |a MATLAB. | ||
653 | |a MATLAB. | ||
653 | 0 | |a Numerical analysis / Data processing | |
653 | 0 | |a Numerical analysis / Data processing | |
689 | 0 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | 1 | |a MATLAB |0 (DE-588)4329066-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Guenther, Ronald B. |e Sonstige |0 (DE-588)1145612091 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 9781315107042 |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030487165&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030487165 |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/SK 900 K45(4) |
DE-BY-FWS_katkey | 696273 |
DE-BY-FWS_media_number | 083000521017 |
_version_ | 1806173804182896640 |
adam_text | Contents Preface xiii 1 Introduction 1.1 ABOUT MATLAB and MATLAB GUI (Graphical User Interface) 1.2 AN INTRODUCTION TO MATLAB................................................. 1.2.1 Matrices and matrix computation........................................... 1.2.2 Polynomials................................................................................ 1.2.3 Output format............................................................................. 1.2.4 Planar plots................................................................................ 1.2.5 3-D mesh plots .......................................................................... 1.2.6 Function files ............................................................................. 1.2.7 Defining functions....................................................................... 1.2.8 Relations and loops.................................................................... 1.3 TAYLOR SERIES................................................................................... 1 1 2 2 6 7 8 9 10 11 12 15 2 Number System and Errors 2.1 FLOATING-POINT ARITHMETIC ................................................. 2.2 ROUND-OFF ERRORS....................................................................... 2.3 TRUNCATION ERROR....................................................................... 2.4 INTERVAL ARITHMETIC................................................................. 23 23 28 32 34 3 Roots of Equations 3.1 THE BISECTION METHOD.............................................................. 3.2 FIXED POINT
ITERATION............................................................. 3.3 THE SECANT METHOD.................................................................... 3.4 NEWTON’S METHOD ....................................................................... 3.5 CONVERGENCE OF THE NEWTON AND SECANT METHODS............................................................................. 3.6 MULTIPLE ROOTS AND THE MODIFIED NEWTON METHOD............................................................................. 3.7 NEWTON’S METHOD FOR NONLINEAR SYSTEMS............................................................................................... APPLIED PROBLEMS................................................................................... 41 42 50 57 62 72 74 80 86 vii
Contents viii 4 System of Linear Equations 93 4.1 MATRICES AND MATRIX OPERATIONS..................................... 94 4.2 NAIVE GAUSSIAN ELIMINATION................................................. 97 4.3 GAUSSIAN ELIMINATION WITH SCALED PARTIAL PIVOTING............................................................................. 105 4.4 LU DECOMPOSITION .......................................................................... 118 4.4.1 Crout’s and Cholesky’s methods................................................. 119 4.4.2 Gaussian elimination method .................................................... 122 4.5 ITERATIVE METHODS.......................................................................... 132 4.5.1 Jacobi iterative method.................................................................132 4.5.2 Gauss-Seidel iterative method.................................................... 134 4.5.3 Convergence................................................................... 137 APPLIED PROBLEMS...................................................................................... 145 5 Interpolation 153 5.1 POLYNOMIAL INTERPOLATION THEORY..................................... 154 5.2 NEWTON’S DIVIDED-DIFFERENCE INTERPOLATING POLYNOMIAL......................................................................................... 156 5.3 THE ERROR OF THE INTERPOLATING POLYNOMIAL......................................................................................... 167 5.4 LAGRANGE INTERPOLATING POLYNOMIAL........................... .172 APPLIED
PROBLEMS...................................................................................... 177 6 Interpolation with Spline Functions 181 6.1 PIECEWISE LINEAR INTERPOLATION........................................... 182 6.2 QUADRATIC SPLINE............................................................................. 188 6.3 NATURAL CUBIC SPLINES.................................................................192 APPLIED PROBLEMS...................................................................................... 206 7 The 7.1 7.2 7.3 Method of Least-Squares 209 LINEAR LEAST-SQUARES....................................................................210 LEAST-SQUARES POLYNOMIAL....................................................... 216 NONLINEAR LEAST-SQUARES...........................................................224 7.3.1 Exponential form..........................................................................224 7.3.2 Hyperbolic form.............................................................................226 APPLIED PROBLEMS...................................................................................... 232 8 Numerical Optimization 235 8.1 ANALYSIS OF SINGLE-VARIABLE FUNCTIONS............................235 8.2 LINE SEARCH METHODS....................................................................238 8.2.1 Bracketing the minimum..............................................................238 8.2.2 Golden section search....................................................................239 8.2.3 Fibonacci Search
.......................................................................... 241 8.2.4 Parabolic Interpolation.................................................................244 8.3 MINIMIZATION USING DERIVATIVES ........................................... 251
Contents ix 8.3.1 Newton’s method..........................................................................251 8.3.2 Secant method................................................................................252 APPLIED PROBLEMS...................................................................................... 255 9 Numerical Differentiation 257 9.1 NUMERICAL DIFFERENTIATION.................................................... 257 9.2 RICHARDSON’S FORMULA.................................................................264 APPLIED PROBLEMS...................................................................................... 270 10 Numerical Integration 273 10.1 TRAPEZOIDAL RULE ..........................................................................274 10.2 SIMPSON’S RULE................................................................................... 283 10.3 ROMBERG ALGORITHM ....................................................................294 10.4 GAUSSIAN QUADRATURE .................................................................301 APPLIED PROBLEMS...................................................................................... 312 11 Numerical Methods for Linear Integral Equations 317 11.1 INTRODUCTION ................................................................................... 317 11.2 QUADRATURE RULES..........................................................................320 11.2.1 Trapezoidal rule.............................................................................321 11.2.2 The Gauss-Nyström
method....................................................... 323 11.3 THE SUCCESSIVE APPROXIMATIONMETHOD .......................... 330 11.4 SCHMIDT’s METHOD.............................................................................332 11.5 VOLTERRA-TYPE INTEGRAL EQUATIONS..................................334 11.5.1 Euler’s method .............................................................................335 11.5.2 Heun’s method .............................................................................336 APPLIED PROBLEMS...................................................................................... 340 12 Numerical Methods for Differential Equations 343 12.1 EULER’S METHOD................................................................................344 12.2 ERROR ANALYSIS ................................................................................350 12.3 HIGHER-ORDER TAYLOR SERIESMETHODS................................ 355 12.4 RUNGE-KUTTA METHODS.................................................................359 12.5 MULTISTEP METHODS.......................................................................373 12.6 ADAMS-BASHFORTH METHODS....................................................... 374 12.7 PREDICTOR-CORRECTOR METHODS........................................... 383 12.8 ADAMS-MOULTON METHODS.......................................................... 384 12.9 NUMERICAL STABILITY ....................................................................392 12.10 HIGHER-ORDER EQUATIONS AND SYSTEMS OF DIFFERENTIAL
EQUATIONS....................................................... 395 12.11 IMPLICIT METHODS AND STIFF SYSTEMS..................................402 12.12 PHASE PLANE ANALYSIS: CHAOTIC DIFFERENTIAL EQUATIONS............................................................................................ 404 APPLIED PROBLEMS...................................................................................... 410
Contents x 13 Boundary-Value Problems 417 13.1 13.2 FINITE-DIFFERENCE METHODS .................................................... 418 SHOOTING METHODS.......................................................................... 425 13.2.1 The nonlinear case ....................................................................... 425 13.2.2 The linear case ............................................................................. 430 APPLIED PROBLEMS...................................................................................... 437 14 Eigenvalues and Eigenvectors 441 14.1 14.2 14.3 14.4 BASIC THEORY...................................................................................... 441 THE POWER METHOD .......................................................................446 THE QUADRATIC METHOD ..............................................................449 EIGENVALUES FOR BOUNDARY-VALUE PROBLEMS............................................................................................... 458 14.5 BIFURCATIONS IN DIFFERENTIAL EQUATIONS............................................................................................ 461 APPLIED PROBLEMS...................................................................................... 466 15 Dynamical Systems and Chaos 467 . 15.1 A REVIEW OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS............................................................................................ 468 15.2 DEFINITIONS AND THEORETICALCONSIDERATIONS .... 471 15.3 TWO-DIMENSIONAL SYSTEMS ......................... .......................... 478
15.4 CHAOS ..................................................................................................... 490 15.5 LAGRANGIAN DYNAMICS .................................................................495 APPLIED PROBLEMS...................................................................................... 502 16 Partial Differential Equations 505 16.1 PARABOLIC EQUATIONS....................................................................506 16.1.1 Explicit methods ..........................................................................506 16.1.2 Implicit methods ..........................................................................510 16.2 HYPERBOLIC EQUATIONS.................................................................517 16.3 ELLIPTIC EQUATIONS..........................................................................524 16.4 NONLINEAR PARTIAL DIFFERENTIALEQUATIONS..............530 16.4.1 Burger’s equation..........................................................................530 16.4.2 Reaction-diffusion equation...........................................................532 16.4.3 Porous media equation.................................................................533 16.4.4 Hamilton-Jacobi-Bellman equation .......................................... 535 16.5 INTRODUCTION TO FINITE-ELEMENTMETHOD....................... 537 16.5.1 Theory............................................................................................ 538 16.5.2 The Finite-Element Method........................................................544 APPLIED
PROBLEMS...................................................................................... 549 Bibliography and References 551 Appendix 556
Contents xi A Calculus Review A.l A.2 A.3 557 Limits and continuity.................................................................................557 Differentiation............................................................................................. 558 Integration................................................................................................... 558 В MATLAB Built-in Functions 561 C Text MATLAB Functions 565 D MATLAB GUI 567 D.l D.2 D.3 D.4 D.5 D.6 D.7 D.8 D.9 Roots of Equations....................................................................................567 System of Linear Equations .................................................................... 569 Interpolation................................................................................................ 570 The Method of Least Squares................................................................. 570 Integration................................................................................................... 571 Differentiation............................................................................................. 572 Numerical Methods for Differential Equations......................................573 Boundary-Value Problems....................................................................... 573 Numerical Methods for PDEs................................................................. 574 Answers to Selected Exercises 577 Index 611
|
any_adam_object | 1 |
author | Kharab, Abdelwahab |
author_GND | (DE-588)1146338872 (DE-588)1145612091 |
author_facet | Kharab, Abdelwahab |
author_role | aut |
author_sort | Kharab, Abdelwahab |
author_variant | a k ak |
building | Verbundindex |
bvnumber | BV045096502 |
classification_rvk | SK 900 |
ctrlnum | (OCoLC)1082322253 (DE-599)BVBBV045096502 |
discipline | Mathematik |
edition | Fourth edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01911nam a22004698c 4500</leader><controlfield tag="001">BV045096502</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191113 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180720s2019 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781138093072</subfield><subfield code="9">978-1-138-09307-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1138093076</subfield><subfield code="9">1138093076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1082322253</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045096502</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 900</subfield><subfield code="0">(DE-625)143268:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kharab, Abdelwahab</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1146338872</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to numerical methods</subfield><subfield code="b">a MATLAB approach</subfield><subfield code="c">Dr. Abdelwahab Kharab (Abu Dhabi University), Professor Ronald B. Guenther (Oregon State University)</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Numerical methods</subfield></datafield><datafield tag="246" ind1="1" ind2="0"><subfield code="a">Numerical methods</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Fourth edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Florida</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 615 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MATLAB.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MATLAB.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Numerical analysis / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Numerical analysis / Data processing</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guenther, Ronald B.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1145612091</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">9781315107042</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030487165&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030487165</subfield></datafield></record></collection> |
id | DE-604.BV045096502 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T10:39:27Z |
institution | BVB |
isbn | 9781138093072 1138093076 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030487165 |
oclc_num | 1082322253 |
open_access_boolean | |
owner | DE-862 DE-BY-FWS DE-739 DE-634 |
owner_facet | DE-862 DE-BY-FWS DE-739 DE-634 |
physical | xv, 615 Seiten Diagramme |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | CRC Press |
record_format | marc |
spellingShingle | Kharab, Abdelwahab An introduction to numerical methods a MATLAB approach MATLAB (DE-588)4329066-8 gnd Numerische Mathematik (DE-588)4042805-9 gnd |
subject_GND | (DE-588)4329066-8 (DE-588)4042805-9 |
title | An introduction to numerical methods a MATLAB approach |
title_alt | Numerical methods |
title_auth | An introduction to numerical methods a MATLAB approach |
title_exact_search | An introduction to numerical methods a MATLAB approach |
title_full | An introduction to numerical methods a MATLAB approach Dr. Abdelwahab Kharab (Abu Dhabi University), Professor Ronald B. Guenther (Oregon State University) |
title_fullStr | An introduction to numerical methods a MATLAB approach Dr. Abdelwahab Kharab (Abu Dhabi University), Professor Ronald B. Guenther (Oregon State University) |
title_full_unstemmed | An introduction to numerical methods a MATLAB approach Dr. Abdelwahab Kharab (Abu Dhabi University), Professor Ronald B. Guenther (Oregon State University) |
title_short | An introduction to numerical methods |
title_sort | an introduction to numerical methods a matlab approach |
title_sub | a MATLAB approach |
topic | MATLAB (DE-588)4329066-8 gnd Numerische Mathematik (DE-588)4042805-9 gnd |
topic_facet | MATLAB Numerische Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030487165&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kharababdelwahab anintroductiontonumericalmethodsamatlabapproach AT guentherronaldb anintroductiontonumericalmethodsamatlabapproach AT kharababdelwahab numericalmethods AT guentherronaldb numericalmethods |
Inhaltsverzeichnis
THWS Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 SK 900 K45(4) |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |