Evolutionary approach to machine learning and deep neural networks: neuro-evolution and gene regulatory networks
This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer l...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer
2018
|
Schriftenreihe: | Computer science
|
Schlagworte: | |
Zusammenfassung: | This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot. |
Beschreibung: | XIII, 245 Seiten Diagramme, teilweise farbig 235 mm. |
ISBN: | 9789811301995 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045095589 | ||
003 | DE-604 | ||
005 | 20181114 | ||
007 | t | ||
008 | 180720s2018 |||| |||| 00||| eng d | ||
020 | |a 9789811301995 |9 978-981-13-0199-5 | ||
024 | 3 | |a 9789811301995 | |
035 | |a (OCoLC)1059569237 | ||
035 | |a (DE-599)HBZHT019742777 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-91G | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a DAT 708f |2 stub | ||
084 | |a DAT 717f |2 stub | ||
084 | |a DAT 718f |2 stub | ||
100 | 1 | |a Iba, Hitoshi |d 1962- |e Verfasser |0 (DE-588)141858443 |4 aut | |
245 | 1 | 0 | |a Evolutionary approach to machine learning and deep neural networks |b neuro-evolution and gene regulatory networks |c Hitoshi Iba |
264 | 1 | |a Singapore |b Springer |c 2018 | |
264 | 4 | |c © 2018 | |
300 | |a XIII, 245 Seiten |b Diagramme, teilweise farbig |c 235 mm. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Computer science | |
505 | 8 | |a Introduction.- Meta-heuristics, machine learning and deep learning methods.- Evolutionary approach to deep learning.- Machine learning approach to evolutionary computation.- Evolutionary approach to gene regulatory networks.- Conclusion. | |
520 | 3 | |a This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot. | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evolutionärer Algorithmus |0 (DE-588)4366912-8 |2 gnd |9 rswk-swf |
653 | |a Künstliche Intelligenz | ||
653 | |a Artificial Intelligence (incl. Robotics | ||
653 | |a Computer Science | ||
653 | |a Bioinformatics | ||
653 | |a Bioinformatik | ||
653 | |a Biomathematik | ||
653 | |a Mathematical and Computational Biology | ||
653 | |a Computational Intelligence | ||
653 | 0 | |a Artificial intelligence | |
653 | 0 | |a Bioinformatics | |
653 | 0 | |a Engineering | |
653 | 0 | |a Computer science | |
653 | 0 | |a Evolutionary Computation;Evolutionary Computation;Meta-Heuristics;Deep Learning;Machine Learning;Gene Regulatory Networks;Particle Swarm Optimization;Differential Evolution;Genetic Programming;Genetic Algorithms | |
689 | 0 | 0 | |a Evolutionärer Algorithmus |0 (DE-588)4366912-8 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, eBook |z 978-981-13-0200-8 |
999 | |a oai:aleph.bib-bvb.de:BVB01-030486264 |
Datensatz im Suchindex
_version_ | 1804178723019161600 |
---|---|
any_adam_object | |
author | Iba, Hitoshi 1962- |
author_GND | (DE-588)141858443 |
author_facet | Iba, Hitoshi 1962- |
author_role | aut |
author_sort | Iba, Hitoshi 1962- |
author_variant | h i hi |
building | Verbundindex |
bvnumber | BV045095589 |
classification_rvk | ST 300 |
classification_tum | DAT 708f DAT 717f DAT 718f |
contents | Introduction.- Meta-heuristics, machine learning and deep learning methods.- Evolutionary approach to deep learning.- Machine learning approach to evolutionary computation.- Evolutionary approach to gene regulatory networks.- Conclusion. |
ctrlnum | (OCoLC)1059569237 (DE-599)HBZHT019742777 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04380nam a2200613 c 4500</leader><controlfield tag="001">BV045095589</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181114 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180720s2018 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811301995</subfield><subfield code="9">978-981-13-0199-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9789811301995</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1059569237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT019742777</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 717f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 718f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Iba, Hitoshi</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141858443</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evolutionary approach to machine learning and deep neural networks</subfield><subfield code="b">neuro-evolution and gene regulatory networks</subfield><subfield code="c">Hitoshi Iba</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer</subfield><subfield code="c">2018</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 245 Seiten</subfield><subfield code="b">Diagramme, teilweise farbig</subfield><subfield code="c">235 mm.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computer science</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction.- Meta-heuristics, machine learning and deep learning methods.- Evolutionary approach to deep learning.- Machine learning approach to evolutionary computation.- Evolutionary approach to gene regulatory networks.- Conclusion.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionärer Algorithmus</subfield><subfield code="0">(DE-588)4366912-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Artificial Intelligence (incl. Robotics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computer Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bioinformatics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bioinformatik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biomathematik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematical and Computational Biology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Bioinformatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Evolutionary Computation;Evolutionary Computation;Meta-Heuristics;Deep Learning;Machine Learning;Gene Regulatory Networks;Particle Swarm Optimization;Differential Evolution;Genetic Programming;Genetic Algorithms</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Evolutionärer Algorithmus</subfield><subfield code="0">(DE-588)4366912-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, eBook</subfield><subfield code="z">978-981-13-0200-8</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030486264</subfield></datafield></record></collection> |
id | DE-604.BV045095589 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:08:30Z |
institution | BVB |
isbn | 9789811301995 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030486264 |
oclc_num | 1059569237 |
open_access_boolean | |
owner | DE-11 DE-91G DE-BY-TUM |
owner_facet | DE-11 DE-91G DE-BY-TUM |
physical | XIII, 245 Seiten Diagramme, teilweise farbig 235 mm. |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer |
record_format | marc |
series2 | Computer science |
spelling | Iba, Hitoshi 1962- Verfasser (DE-588)141858443 aut Evolutionary approach to machine learning and deep neural networks neuro-evolution and gene regulatory networks Hitoshi Iba Singapore Springer 2018 © 2018 XIII, 245 Seiten Diagramme, teilweise farbig 235 mm. txt rdacontent n rdamedia nc rdacarrier Computer science Introduction.- Meta-heuristics, machine learning and deep learning methods.- Evolutionary approach to deep learning.- Machine learning approach to evolutionary computation.- Evolutionary approach to gene regulatory networks.- Conclusion. This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot. Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf Evolutionärer Algorithmus (DE-588)4366912-8 gnd rswk-swf Künstliche Intelligenz Artificial Intelligence (incl. Robotics Computer Science Bioinformatics Bioinformatik Biomathematik Mathematical and Computational Biology Computational Intelligence Artificial intelligence Engineering Evolutionary Computation;Evolutionary Computation;Meta-Heuristics;Deep Learning;Machine Learning;Gene Regulatory Networks;Particle Swarm Optimization;Differential Evolution;Genetic Programming;Genetic Algorithms Evolutionärer Algorithmus (DE-588)4366912-8 s Maschinelles Lernen (DE-588)4193754-5 s Deep learning (DE-588)1135597375 s DE-604 Erscheint auch als Online-Ausgabe, eBook 978-981-13-0200-8 |
spellingShingle | Iba, Hitoshi 1962- Evolutionary approach to machine learning and deep neural networks neuro-evolution and gene regulatory networks Introduction.- Meta-heuristics, machine learning and deep learning methods.- Evolutionary approach to deep learning.- Machine learning approach to evolutionary computation.- Evolutionary approach to gene regulatory networks.- Conclusion. Maschinelles Lernen (DE-588)4193754-5 gnd Deep learning (DE-588)1135597375 gnd Evolutionärer Algorithmus (DE-588)4366912-8 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)1135597375 (DE-588)4366912-8 |
title | Evolutionary approach to machine learning and deep neural networks neuro-evolution and gene regulatory networks |
title_auth | Evolutionary approach to machine learning and deep neural networks neuro-evolution and gene regulatory networks |
title_exact_search | Evolutionary approach to machine learning and deep neural networks neuro-evolution and gene regulatory networks |
title_full | Evolutionary approach to machine learning and deep neural networks neuro-evolution and gene regulatory networks Hitoshi Iba |
title_fullStr | Evolutionary approach to machine learning and deep neural networks neuro-evolution and gene regulatory networks Hitoshi Iba |
title_full_unstemmed | Evolutionary approach to machine learning and deep neural networks neuro-evolution and gene regulatory networks Hitoshi Iba |
title_short | Evolutionary approach to machine learning and deep neural networks |
title_sort | evolutionary approach to machine learning and deep neural networks neuro evolution and gene regulatory networks |
title_sub | neuro-evolution and gene regulatory networks |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Deep learning (DE-588)1135597375 gnd Evolutionärer Algorithmus (DE-588)4366912-8 gnd |
topic_facet | Maschinelles Lernen Deep learning Evolutionärer Algorithmus |
work_keys_str_mv | AT ibahitoshi evolutionaryapproachtomachinelearninganddeepneuralnetworksneuroevolutionandgeneregulatorynetworks |