Linear orderings of sparse graphs:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Passau
2017
|
Schlagworte: | |
Online-Zugang: | kostenfrei kostenfrei Inhaltsverzeichnis |
Beschreibung: | vii, 282 Seiten Illustrationen, Diagramme |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045085827 | ||
003 | DE-604 | ||
005 | 20190307 | ||
007 | t | ||
008 | 180712s2017 a||| m||| 00||| eng d | ||
035 | |a (OCoLC)1164616552 | ||
035 | |a (DE-599)BVBBV045085827 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a Hanauer, Kathrin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Linear orderings of sparse graphs |c Kathrin Hanauer |
264 | 1 | |a Passau |c 2017 | |
300 | |a vii, 282 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Universität Passau |d 2018 | ||
650 | 0 | 7 | |a Schwach besetzte Matrix |0 (DE-588)4056053-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineares Ordnungsproblem |0 (DE-588)4120676-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Lineares Ordnungsproblem |0 (DE-588)4120676-9 |D s |
689 | 0 | 1 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | 2 | |a Schwach besetzte Matrix |0 (DE-588)4056053-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o urn:nbn:de:bvb:739-opus4-5524 |
856 | 4 | 1 | |u https://nbn-resolving.org/urn:nbn:de:bvb:739-opus4-5524 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/552 |z kostenfrei |3 Volltext |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030476715&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030476715 |
Datensatz im Suchindex
_version_ | 1804178704962682880 |
---|---|
adam_text | 1 Introduction
Contents
1
2 The Linear Ordering Problem: An Outline 5
2.1 The Linear Ordering Problem and its Kin........................... 6
2.1.1 Problem Statements ...................................... 6
2.1.2 Linear Programming ....... . . .............. ... ........ 9
2.1.3 Dual Problems ............................................... 11
2.1.4 The Acyclic Subgraph Polytope ............................... 13
2.1.5 Reductions to and from the LINEAR ORDERING Problem ..... 14
2.2 Complexity........................................................ 18
2.2.1 .A/’T’-Completeness Results ................................ 18
2.2.2 Approximability and Approximations .................... . 21
2.2.3 Parameterized Complexity..................................... 23
2.2.4 Polynomially Solvable Instances..................... 25
2.3 The Cardinality of Optimal Feedback Arc Sets....................... 26
2.3.1 Existential Bounds.....................................!... 26
2.3.2 Algorithms with Absolute Performance Guarantees . . ........ 27
2.4 Linear Orderings in Practice ..................................... 28
2.4.1 Heuristics . .... 1 ... ............................... 28
2.4.2 Applications ............................................. 30
3 Preliminaries: Definitions and Preparations 35
3.1 Basics........................................................... 35
3.1.1 Sets and Multisets ................................... . 35
3.1.2 Minimal and Maximal versus Minimum and Maximum . . ... 37
3.1.3 Computational Complexity................... 37
3.1.4 Data Structures............................... 37
3.2 General Graph Theory................................ . . ..... 38
3.2.1 Graphs, Vertices, and Arcs ......... ... . ... . . . . ... . 38
IV
Contents
3.2.2 Vertex Degrees................................................ 39
3.2.3 Paths, Cycles, and Walks.................................... 40
3.2.4 Connectivity and Acyclicity................................... 41
3.3 Feedback Arc Sets and Linear Orderings.............................. 43
3.3.1 Feedback Arc Sets ........... . ............................ 43
3.3.2 Linear Orderings.............................................. 44
3.3.3 Forward Paths and Layouts..................................... 47
3.4 Preprocessing and Default Assumptions............................... 48
3.4.1 Loops and Anti-Parallel Arcs.................................. 48
3.4.2 Strong Connectivity.......................................... 49
3.4.3 Biconnectivity.............................................. 50
4 Properties of Optimal Linear Orderings: A Microscopic View 55
4.1 General Framework................................. . . ........... 55
4.2 Algorithmic Setup ................................................ 58
4.2.1 Graphs........................................................ 58
4.2.2 Linear Orderings . ......................................... 59
4.2.3 Vertex Layouts................................................ 59
4.2.4 Initializing the Data Structures............................ 60
4.2.5 General Remarks............................................... 63
4.3 Nesting Property................................................. 63
4.3.1 A 1-opt Algorithm............................................. 63
4.3.2 Nesting Arcs ................................................. 68
4.3.3 A Graph s Excess............................................ 71
,4.4 Path Property....................................................... 73
4.4.1 Forward Paths for Backward Arcs............................... 73
4.4.2 Establishing Forward Paths.................................. 74
4.4.3 Minimal Feedback Arc Sets .................................... 76
- 4.5 Blocking Vertices Property........................................ 77
4.5.1 Left- and Right-Blocking Vertices........................... 78
4.5.2 Vertical Splits ............................................ 82
4.5.3 Establishing Non-Blocking Forward Paths....................... 84
4.6 Multipath Property.................................................. 87
4.6.1 Arc-Disjoint Forward Paths................................... 87
4.6.2 Analyzing the Flow Network Approach........................... 91
Contents v
4.6.3 Arc-Disjoint Cycles ... . . . . ................. . . . . . . . 94
4.6.4 An AfV-hard. Extension .................. 95
4.7 Multipath Blocking Vertices Property . .,....■........ .......... 97
4.7.1 Non-Blocking Multipaths ........................ 98
4.7.2 Flow Networks for Split Graphs....................... 103
4.7.3 Again an A/’P-hard Extension ......................... 107
4.8 Eliminable Layouts Property ..................................... 112
4.8.1 Eliminable Layouts............................ . . . . 112
4.8.2 The Elimination Operation . ..............................117
4.8.3 Eliminating Eliminable Layouts . :............ .......... 122
4.9 A PsiOpt-Algorithm . ........................................... 126
4.9.1 A Cascading Meta-Algorithm ............................ 127
4.9.2 Establishing the Necessary Properties Simultaneously . . . i . . 129
4.10 Manipulations and Meta-Properties............ 132
4.10.1 Basic Operations on Linear Orderings and Graphs........... 133
4.10.2 Fusion Property..................................... 143
4.10.3 Reduction Property ..............: . . 146
4.10.4 Arc Stability Property .................... 149
5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs 151
5.1 Auxiliary Graphs......................................... 152
5.1.1 The Forward Path Graph.................. . .......:..... 152
5.1.2 The Pooled Forward Path Graph ............................ 154
5.1.3 The Polarized Forward Path Graph ....................; 156
5.1.4 The Truncated Forward Path Graph ............. i. ;. . 157
5.2 Subcubic Graphs................................................ . . 159
5.2.1 A Tight Bound ............................................ 159
5.2.2 On the Approximation Ratio.............................. 1 . 163
5.3 From Subcubic to General Graphs ............... . . .:........ 167
5.3.1 Pebble Transportation in Supercubic Graphs.......... . . . 168
5.3.2 A General Assignment Scheme................................ 169
5.4 Subquartic and Subquintic Graphs................... 173
5.4.1 Two Special Cases of One-Arc Stability..................... 173
5.4.2 A Tight Bound for Subquartic Graphs........................ 177
5.4.3 Subquintic Graphs......................................... 193
Contents
vi-
6 Exact and Fast Algorithms for- Linear Ordering 197
6.1 Partial Layouts and Incomplete Linear Orderings . -.............. 198
6.2 Exact Algorithms for Optimization and Decision ...................201
• 6.3 Branch and Bound with Integrated Partial Layouts . . . .......... 208
6.4 Fine-Tuning.................................................... 218
6.5 Runtime Comparison for Sparse Graphs 219
7 , Experimental Evaluation 221
7.1 The Algorithm Test Suite........................................ 222
7.1.1 Algorithms ............. . . . ......................... 222
7.1.2 Input Instances.......................................... 224
7.1.3 Technical Setup........................................ 226
7.1.4 Evaluation . ............................................ 227
7.2 Sparse Regular Graphs...........,............................... 228
7.2.1 Selection and Configuration of Algorithms................ 228
7.2.2 Performances and Running Times........................... 229
7.2.3 Summary................................................ 237
7.3 Large Graphs . . ............................................... 239
7.3.1 Fences, Ladders, and their Composites.................... 239
7.3.2 Performances and Running Times .......................... 240
i 7.3.3 Summary................................................... 243
7.4 The LOLIB Graph Library....................................... 244
7.4.1 Sets of LOLIB Instances . . . ............................244
. 7.4.2 Performances and Running Times......................... 246
: . 7.4.3 Comparison to Other Approaches........................... 249
7.5 Threats to Validity............................................. . 249
v 7.5.1 . Construct Validity...................................... 249
7.5.2 Internal Validity.......... . . ........................ 250
7.5.3 External Validity......................................... 250
7.6 Summary...................................................... 250
8 Conclusion and Future Work 253
Bibliography 255
Notation Index
267
Contents
vu
Algorithm Index
273
Subject Index
277
|
any_adam_object | 1 |
author | Hanauer, Kathrin |
author_facet | Hanauer, Kathrin |
author_role | aut |
author_sort | Hanauer, Kathrin |
author_variant | k h kh |
building | Verbundindex |
bvnumber | BV045085827 |
classification_rvk | SK 890 |
collection | ebook |
ctrlnum | (OCoLC)1164616552 (DE-599)BVBBV045085827 |
discipline | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01990nam a2200421 c 4500</leader><controlfield tag="001">BV045085827</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190307 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180712s2017 a||| m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1164616552</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045085827</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hanauer, Kathrin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear orderings of sparse graphs</subfield><subfield code="c">Kathrin Hanauer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Passau</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vii, 282 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Universität Passau</subfield><subfield code="d">2018</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwach besetzte Matrix</subfield><subfield code="0">(DE-588)4056053-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares Ordnungsproblem</subfield><subfield code="0">(DE-588)4120676-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineares Ordnungsproblem</subfield><subfield code="0">(DE-588)4120676-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Schwach besetzte Matrix</subfield><subfield code="0">(DE-588)4056053-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">urn:nbn:de:bvb:739-opus4-5524</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:739-opus4-5524</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/552</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030476715&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030476715</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV045085827 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:08:13Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030476715 |
oclc_num | 1164616552 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | vii, 282 Seiten Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
record_format | marc |
spelling | Hanauer, Kathrin Verfasser aut Linear orderings of sparse graphs Kathrin Hanauer Passau 2017 vii, 282 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Dissertation Universität Passau 2018 Schwach besetzte Matrix (DE-588)4056053-3 gnd rswk-swf Graphentheorie (DE-588)4113782-6 gnd rswk-swf Lineares Ordnungsproblem (DE-588)4120676-9 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Lineares Ordnungsproblem (DE-588)4120676-9 s Graphentheorie (DE-588)4113782-6 s Schwach besetzte Matrix (DE-588)4056053-3 s DE-604 Erscheint auch als Online-Ausgabe urn:nbn:de:bvb:739-opus4-5524 https://nbn-resolving.org/urn:nbn:de:bvb:739-opus4-5524 Resolving-System kostenfrei Volltext https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/552 kostenfrei Volltext Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030476715&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hanauer, Kathrin Linear orderings of sparse graphs Schwach besetzte Matrix (DE-588)4056053-3 gnd Graphentheorie (DE-588)4113782-6 gnd Lineares Ordnungsproblem (DE-588)4120676-9 gnd |
subject_GND | (DE-588)4056053-3 (DE-588)4113782-6 (DE-588)4120676-9 (DE-588)4113937-9 |
title | Linear orderings of sparse graphs |
title_auth | Linear orderings of sparse graphs |
title_exact_search | Linear orderings of sparse graphs |
title_full | Linear orderings of sparse graphs Kathrin Hanauer |
title_fullStr | Linear orderings of sparse graphs Kathrin Hanauer |
title_full_unstemmed | Linear orderings of sparse graphs Kathrin Hanauer |
title_short | Linear orderings of sparse graphs |
title_sort | linear orderings of sparse graphs |
topic | Schwach besetzte Matrix (DE-588)4056053-3 gnd Graphentheorie (DE-588)4113782-6 gnd Lineares Ordnungsproblem (DE-588)4120676-9 gnd |
topic_facet | Schwach besetzte Matrix Graphentheorie Lineares Ordnungsproblem Hochschulschrift |
url | https://nbn-resolving.org/urn:nbn:de:bvb:739-opus4-5524 https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/552 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030476715&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hanauerkathrin linearorderingsofsparsegraphs |