Machine learning for face, emotion, and pain recognition:
This Spotlight explains how to build an automated system for face, emotion, and pain recognition. These steps include pre-processing, face detection and segmentation, feature extraction, and finally and most importantly, recognition to classify features and show the accuracy of the system. State-of-...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Bellingham, Washington, USA
SPIE Press
[2018]
|
Schriftenreihe: | SPIE spotlight series
vol. SL37 |
Schlagworte: | |
Online-Zugang: | FHD01 UBG01 Volltext |
Zusammenfassung: | This Spotlight explains how to build an automated system for face, emotion, and pain recognition. These steps include pre-processing, face detection and segmentation, feature extraction, and finally and most importantly, recognition to classify features and show the accuracy of the system. State-of-the-art algorithms are used to describe all possible solutions of each step. Pre-processing involves algorithms to reduce noise and improve the illumination of images. For face detection and segmentation, several approaches are described to detect a face in images: Viola-Jones, color-based approaches, histogram-based approaches, and morphological operation. Local binary patterns, edge detectors, wavelets, discrete Cosine transformation, Gabor filters, and fuzzified features are used for feature extraction. The last step includes three approaches for recognition: classification techniques (with a special focus on deep learning), statistical modeling, and distance/similarity measures |
Beschreibung: | 1 Online-Ressource (vi, 101 Seiten) |
ISBN: | 9781510619869 |
DOI: | 10.1117/3.2322572 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV045058936 | ||
003 | DE-604 | ||
005 | 20190603 | ||
007 | cr|uuu---uuuuu | ||
008 | 180626s2018 |||| o||u| ||||||eng d | ||
020 | |a 9781510619869 |9 978-1-5106-1986-9 | ||
035 | |a (OCoLC)1042914382 | ||
035 | |a (DE-599)BVBBV045058936 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-473 | ||
100 | 1 | |a Anbarjafari, Gholamreza |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1153915103 |4 aut | |
245 | 1 | 0 | |a Machine learning for face, emotion, and pain recognition |c by Gholamreza Anbarjafari, Jelena Gorbova, Rain Eric Hammer, Pejman Rasti, and Fatemeh Noroozi |
264 | 1 | |a Bellingham, Washington, USA |b SPIE Press |c [2018] | |
300 | |a 1 Online-Ressource (vi, 101 Seiten) | ||
336 | |b txt |2 rdacontent | ||
336 | |b sti |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a SPIE spotlight series |v vol. SL37 | |
505 | 8 | |a 1. Introduction -- 2. Face recognition: 2.1. Introduction; 2.3. PDF-based face recognition; 2.4. Data fusion -- 3. Emotion recognition: 3.1. Speech-based emotion recognition; 3.2. Other modalities; 3.3. Gesture-based emotion recognition; 3.4. Face-expression recognition -- 4. Pain recognition -- 5. Face databases: 5.1. Elicitation methods; 5.2. Categories of emotion; 5.3. Database types; 5.4. Pain databases -- Acknowledgments -- References | |
520 | |a This Spotlight explains how to build an automated system for face, emotion, and pain recognition. These steps include pre-processing, face detection and segmentation, feature extraction, and finally and most importantly, recognition to classify features and show the accuracy of the system. State-of-the-art algorithms are used to describe all possible solutions of each step. Pre-processing involves algorithms to reduce noise and improve the illumination of images. For face detection and segmentation, several approaches are described to detect a face in images: Viola-Jones, color-based approaches, histogram-based approaches, and morphological operation. Local binary patterns, edge detectors, wavelets, discrete Cosine transformation, Gabor filters, and fuzzified features are used for feature extraction. The last step includes three approaches for recognition: classification techniques (with a special focus on deep learning), statistical modeling, and distance/similarity measures | ||
650 | 4 | |a Human face recognition (Computer science) | |
650 | 4 | |a Emotion recognition | |
700 | 1 | |a Gorbova, Jelena |e Verfasser |4 aut | |
700 | 1 | |a Hammer, Rain Eric |e Verfasser |4 aut | |
700 | 1 | |a Rasti, Pejman |e Verfasser |4 aut | |
700 | 1 | |a Noroozi, Fatemeh |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1153913615 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, epub |z 978-1-5106-1987-6 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, mobi |z 978-1-5106-1988-3 |
856 | 4 | 0 | |u https://doi.org/10.1117/3.2322572 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-50-SPI |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030450519 | ||
966 | e | |u https://doi.org/10.1117/3.2322572 |l FHD01 |p ZDB-50-SPI |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/ub-bamberg/detail.action?docID=5455798 |l UBG01 |p ZDB-30-PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178656974602240 |
---|---|
any_adam_object | |
author | Anbarjafari, Gholamreza ca. 20./21. Jh Gorbova, Jelena Hammer, Rain Eric Rasti, Pejman Noroozi, Fatemeh ca. 20./21. Jh |
author_GND | (DE-588)1153915103 (DE-588)1153913615 |
author_facet | Anbarjafari, Gholamreza ca. 20./21. Jh Gorbova, Jelena Hammer, Rain Eric Rasti, Pejman Noroozi, Fatemeh ca. 20./21. Jh |
author_role | aut aut aut aut aut |
author_sort | Anbarjafari, Gholamreza ca. 20./21. Jh |
author_variant | g a ga j g jg r e h re reh p r pr f n fn |
building | Verbundindex |
bvnumber | BV045058936 |
collection | ZDB-50-SPI ZDB-30-PQE |
contents | 1. Introduction -- 2. Face recognition: 2.1. Introduction; 2.3. PDF-based face recognition; 2.4. Data fusion -- 3. Emotion recognition: 3.1. Speech-based emotion recognition; 3.2. Other modalities; 3.3. Gesture-based emotion recognition; 3.4. Face-expression recognition -- 4. Pain recognition -- 5. Face databases: 5.1. Elicitation methods; 5.2. Categories of emotion; 5.3. Database types; 5.4. Pain databases -- Acknowledgments -- References |
ctrlnum | (OCoLC)1042914382 (DE-599)BVBBV045058936 |
doi_str_mv | 10.1117/3.2322572 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03290nmm a2200445 cb4500</leader><controlfield tag="001">BV045058936</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190603 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180626s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781510619869</subfield><subfield code="9">978-1-5106-1986-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1042914382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045058936</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anbarjafari, Gholamreza</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1153915103</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for face, emotion, and pain recognition</subfield><subfield code="c">by Gholamreza Anbarjafari, Jelena Gorbova, Rain Eric Hammer, Pejman Rasti, and Fatemeh Noroozi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bellingham, Washington, USA</subfield><subfield code="b">SPIE Press</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vi, 101 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">sti</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">SPIE spotlight series</subfield><subfield code="v">vol. SL37</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction -- 2. Face recognition: 2.1. Introduction; 2.3. PDF-based face recognition; 2.4. Data fusion -- 3. Emotion recognition: 3.1. Speech-based emotion recognition; 3.2. Other modalities; 3.3. Gesture-based emotion recognition; 3.4. Face-expression recognition -- 4. Pain recognition -- 5. Face databases: 5.1. Elicitation methods; 5.2. Categories of emotion; 5.3. Database types; 5.4. Pain databases -- Acknowledgments -- References</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This Spotlight explains how to build an automated system for face, emotion, and pain recognition. These steps include pre-processing, face detection and segmentation, feature extraction, and finally and most importantly, recognition to classify features and show the accuracy of the system. State-of-the-art algorithms are used to describe all possible solutions of each step. Pre-processing involves algorithms to reduce noise and improve the illumination of images. For face detection and segmentation, several approaches are described to detect a face in images: Viola-Jones, color-based approaches, histogram-based approaches, and morphological operation. Local binary patterns, edge detectors, wavelets, discrete Cosine transformation, Gabor filters, and fuzzified features are used for feature extraction. The last step includes three approaches for recognition: classification techniques (with a special focus on deep learning), statistical modeling, and distance/similarity measures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human face recognition (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Emotion recognition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gorbova, Jelena</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hammer, Rain Eric</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rasti, Pejman</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noroozi, Fatemeh</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1153913615</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, epub</subfield><subfield code="z">978-1-5106-1987-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, mobi</subfield><subfield code="z">978-1-5106-1988-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1117/3.2322572</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-50-SPI</subfield><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030450519</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1117/3.2322572</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-50-SPI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/ub-bamberg/detail.action?docID=5455798</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045058936 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:07:27Z |
institution | BVB |
isbn | 9781510619869 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030450519 |
oclc_num | 1042914382 |
open_access_boolean | |
owner | DE-1050 DE-473 DE-BY-UBG |
owner_facet | DE-1050 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (vi, 101 Seiten) |
psigel | ZDB-50-SPI ZDB-30-PQE |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | SPIE Press |
record_format | marc |
series2 | SPIE spotlight series |
spelling | Anbarjafari, Gholamreza ca. 20./21. Jh. Verfasser (DE-588)1153915103 aut Machine learning for face, emotion, and pain recognition by Gholamreza Anbarjafari, Jelena Gorbova, Rain Eric Hammer, Pejman Rasti, and Fatemeh Noroozi Bellingham, Washington, USA SPIE Press [2018] 1 Online-Ressource (vi, 101 Seiten) txt rdacontent sti rdacontent c rdamedia cr rdacarrier SPIE spotlight series vol. SL37 1. Introduction -- 2. Face recognition: 2.1. Introduction; 2.3. PDF-based face recognition; 2.4. Data fusion -- 3. Emotion recognition: 3.1. Speech-based emotion recognition; 3.2. Other modalities; 3.3. Gesture-based emotion recognition; 3.4. Face-expression recognition -- 4. Pain recognition -- 5. Face databases: 5.1. Elicitation methods; 5.2. Categories of emotion; 5.3. Database types; 5.4. Pain databases -- Acknowledgments -- References This Spotlight explains how to build an automated system for face, emotion, and pain recognition. These steps include pre-processing, face detection and segmentation, feature extraction, and finally and most importantly, recognition to classify features and show the accuracy of the system. State-of-the-art algorithms are used to describe all possible solutions of each step. Pre-processing involves algorithms to reduce noise and improve the illumination of images. For face detection and segmentation, several approaches are described to detect a face in images: Viola-Jones, color-based approaches, histogram-based approaches, and morphological operation. Local binary patterns, edge detectors, wavelets, discrete Cosine transformation, Gabor filters, and fuzzified features are used for feature extraction. The last step includes three approaches for recognition: classification techniques (with a special focus on deep learning), statistical modeling, and distance/similarity measures Human face recognition (Computer science) Emotion recognition Gorbova, Jelena Verfasser aut Hammer, Rain Eric Verfasser aut Rasti, Pejman Verfasser aut Noroozi, Fatemeh ca. 20./21. Jh. Verfasser (DE-588)1153913615 aut Erscheint auch als Online-Ausgabe, epub 978-1-5106-1987-6 Erscheint auch als Online-Ausgabe, mobi 978-1-5106-1988-3 https://doi.org/10.1117/3.2322572 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Anbarjafari, Gholamreza ca. 20./21. Jh Gorbova, Jelena Hammer, Rain Eric Rasti, Pejman Noroozi, Fatemeh ca. 20./21. Jh Machine learning for face, emotion, and pain recognition 1. Introduction -- 2. Face recognition: 2.1. Introduction; 2.3. PDF-based face recognition; 2.4. Data fusion -- 3. Emotion recognition: 3.1. Speech-based emotion recognition; 3.2. Other modalities; 3.3. Gesture-based emotion recognition; 3.4. Face-expression recognition -- 4. Pain recognition -- 5. Face databases: 5.1. Elicitation methods; 5.2. Categories of emotion; 5.3. Database types; 5.4. Pain databases -- Acknowledgments -- References Human face recognition (Computer science) Emotion recognition |
title | Machine learning for face, emotion, and pain recognition |
title_auth | Machine learning for face, emotion, and pain recognition |
title_exact_search | Machine learning for face, emotion, and pain recognition |
title_full | Machine learning for face, emotion, and pain recognition by Gholamreza Anbarjafari, Jelena Gorbova, Rain Eric Hammer, Pejman Rasti, and Fatemeh Noroozi |
title_fullStr | Machine learning for face, emotion, and pain recognition by Gholamreza Anbarjafari, Jelena Gorbova, Rain Eric Hammer, Pejman Rasti, and Fatemeh Noroozi |
title_full_unstemmed | Machine learning for face, emotion, and pain recognition by Gholamreza Anbarjafari, Jelena Gorbova, Rain Eric Hammer, Pejman Rasti, and Fatemeh Noroozi |
title_short | Machine learning for face, emotion, and pain recognition |
title_sort | machine learning for face emotion and pain recognition |
topic | Human face recognition (Computer science) Emotion recognition |
topic_facet | Human face recognition (Computer science) Emotion recognition |
url | https://doi.org/10.1117/3.2322572 |
work_keys_str_mv | AT anbarjafarigholamreza machinelearningforfaceemotionandpainrecognition AT gorbovajelena machinelearningforfaceemotionandpainrecognition AT hammerraineric machinelearningforfaceemotionandpainrecognition AT rastipejman machinelearningforfaceemotionandpainrecognition AT noroozifatemeh machinelearningforfaceemotionandpainrecognition |