First steps in random walks: from tools to applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford
Oxford University Press
2011
|
Schlagworte: | |
Beschreibung: | Includes bibliographical references and index "The name "random walk" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of "Nature". The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier such a problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays the theory of random walks has proved useful in physics and chemistry (diffusion, reactions, mixing in flows), economics, biology (from animal spread to motion of subcellular structures) and in many other disciplines. The random walk approach serves not only as a model of simple diffusion but of many complex sub- and super-diffusive transport processes as well. This book discusses the main variants of random walks and gives the most important mathematical tools for their theoretical description"-- |
Beschreibung: | vi, 152 p. |
ISBN: | 0199234868 9780199234868 9780191552953 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044967534 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180529s2011 |||| o||u| ||||||eng d | ||
020 | |a 0199234868 |9 0-19-923486-8 | ||
020 | |a 9780199234868 |9 978-0-19-923486-8 | ||
020 | |a 9780191552953 |c Online |9 978-0-19-155295-3 | ||
035 | |a (ZDB-30-PAD)EBC1179556 | ||
035 | |a (ZDB-89-EBL)EBL1179556 | ||
035 | |a (ZDB-38-EBR)ebr10691670 | ||
035 | |a (OCoLC)843200350 | ||
035 | |a (DE-599)BVBBV044967534 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 519.2/82 |2 23 | |
100 | 1 | |a Klafter, J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a First steps in random walks |b from tools to applications |c J. Klafter and I.M. Sokolov |
264 | 1 | |a Oxford |b Oxford University Press |c 2011 | |
300 | |a vi, 152 p. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a "The name "random walk" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of "Nature". The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier such a problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays the theory of random walks has proved useful in physics and chemistry (diffusion, reactions, mixing in flows), economics, biology (from animal spread to motion of subcellular structures) and in many other disciplines. The random walk approach serves not only as a model of simple diffusion but of many complex sub- and super-diffusive transport processes as well. This book discusses the main variants of random walks and gives the most important mathematical tools for their theoretical description"-- | ||
505 | 0 | |a 1. Characteristic functions -- 2. Generating functions and applications -- 3. Continuous-time random walks -- 4. CTRW and aging phenomena -- 5. Master equations -- 6. Fractional diffusion and Fokker-Planck equations for subdiffusion -- 7. Lévy flights -- 8. Coupled CTRW and Lévy walks -- 9. Simple reactions : A+B->B -- 10. Random walks on percolation structures | |
650 | 4 | |a Random walks (Mathematics) | |
650 | 0 | 7 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |D s |
689 | 0 | 1 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Sokolov, Igor M. |d 1958- |e Sonstige |4 oth | |
912 | |a ZDB-30-PAD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030360024 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804178569621929984 |
---|---|
any_adam_object | |
author | Klafter, J. |
author_facet | Klafter, J. |
author_role | aut |
author_sort | Klafter, J. |
author_variant | j k jk |
building | Verbundindex |
bvnumber | BV044967534 |
collection | ZDB-30-PAD |
contents | 1. Characteristic functions -- 2. Generating functions and applications -- 3. Continuous-time random walks -- 4. CTRW and aging phenomena -- 5. Master equations -- 6. Fractional diffusion and Fokker-Planck equations for subdiffusion -- 7. Lévy flights -- 8. Coupled CTRW and Lévy walks -- 9. Simple reactions : A+B->B -- 10. Random walks on percolation structures |
ctrlnum | (ZDB-30-PAD)EBC1179556 (ZDB-89-EBL)EBL1179556 (ZDB-38-EBR)ebr10691670 (OCoLC)843200350 (DE-599)BVBBV044967534 |
dewey-full | 519.2/82 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/82 |
dewey-search | 519.2/82 |
dewey-sort | 3519.2 282 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02856nmm a2200457zc 4500</leader><controlfield tag="001">BV044967534</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180529s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0199234868</subfield><subfield code="9">0-19-923486-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199234868</subfield><subfield code="9">978-0-19-923486-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191552953</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-19-155295-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC1179556</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1179556</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10691670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)843200350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044967534</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/82</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klafter, J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">First steps in random walks</subfield><subfield code="b">from tools to applications</subfield><subfield code="c">J. Klafter and I.M. Sokolov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vi, 152 p.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"The name "random walk" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of "Nature". The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier such a problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays the theory of random walks has proved useful in physics and chemistry (diffusion, reactions, mixing in flows), economics, biology (from animal spread to motion of subcellular structures) and in many other disciplines. The random walk approach serves not only as a model of simple diffusion but of many complex sub- and super-diffusive transport processes as well. This book discusses the main variants of random walks and gives the most important mathematical tools for their theoretical description"--</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Characteristic functions -- 2. Generating functions and applications -- 3. Continuous-time random walks -- 4. CTRW and aging phenomena -- 5. Master equations -- 6. Fractional diffusion and Fokker-Planck equations for subdiffusion -- 7. Lévy flights -- 8. Coupled CTRW and Lévy walks -- 9. Simple reactions : A+B->B -- 10. Random walks on percolation structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random walks (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sokolov, Igor M.</subfield><subfield code="d">1958-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030360024</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044967534 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:06:04Z |
institution | BVB |
isbn | 0199234868 9780199234868 9780191552953 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030360024 |
oclc_num | 843200350 |
open_access_boolean | |
physical | vi, 152 p. |
psigel | ZDB-30-PAD |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Oxford University Press |
record_format | marc |
spelling | Klafter, J. Verfasser aut First steps in random walks from tools to applications J. Klafter and I.M. Sokolov Oxford Oxford University Press 2011 vi, 152 p. txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index "The name "random walk" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of "Nature". The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier such a problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays the theory of random walks has proved useful in physics and chemistry (diffusion, reactions, mixing in flows), economics, biology (from animal spread to motion of subcellular structures) and in many other disciplines. The random walk approach serves not only as a model of simple diffusion but of many complex sub- and super-diffusive transport processes as well. This book discusses the main variants of random walks and gives the most important mathematical tools for their theoretical description"-- 1. Characteristic functions -- 2. Generating functions and applications -- 3. Continuous-time random walks -- 4. CTRW and aging phenomena -- 5. Master equations -- 6. Fractional diffusion and Fokker-Planck equations for subdiffusion -- 7. Lévy flights -- 8. Coupled CTRW and Lévy walks -- 9. Simple reactions : A+B->B -- 10. Random walks on percolation structures Random walks (Mathematics) Irrfahrtsproblem (DE-588)4162442-7 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Irrfahrtsproblem (DE-588)4162442-7 s Stochastischer Prozess (DE-588)4057630-9 s 1\p DE-604 Sokolov, Igor M. 1958- Sonstige oth 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Klafter, J. First steps in random walks from tools to applications 1. Characteristic functions -- 2. Generating functions and applications -- 3. Continuous-time random walks -- 4. CTRW and aging phenomena -- 5. Master equations -- 6. Fractional diffusion and Fokker-Planck equations for subdiffusion -- 7. Lévy flights -- 8. Coupled CTRW and Lévy walks -- 9. Simple reactions : A+B->B -- 10. Random walks on percolation structures Random walks (Mathematics) Irrfahrtsproblem (DE-588)4162442-7 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
subject_GND | (DE-588)4162442-7 (DE-588)4057630-9 |
title | First steps in random walks from tools to applications |
title_auth | First steps in random walks from tools to applications |
title_exact_search | First steps in random walks from tools to applications |
title_full | First steps in random walks from tools to applications J. Klafter and I.M. Sokolov |
title_fullStr | First steps in random walks from tools to applications J. Klafter and I.M. Sokolov |
title_full_unstemmed | First steps in random walks from tools to applications J. Klafter and I.M. Sokolov |
title_short | First steps in random walks |
title_sort | first steps in random walks from tools to applications |
title_sub | from tools to applications |
topic | Random walks (Mathematics) Irrfahrtsproblem (DE-588)4162442-7 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
topic_facet | Random walks (Mathematics) Irrfahrtsproblem Stochastischer Prozess |
work_keys_str_mv | AT klafterj firststepsinrandomwalksfromtoolstoapplications AT sokolovigorm firststepsinrandomwalksfromtoolstoapplications |