Single variable calculus: a first step
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2018]
|
Schriftenreihe: | De Gruyter textbook
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110524628&searchTitles=true Inhaltsverzeichnis |
Beschreibung: | X, 414 Seiten Illustrationen, Diagramme 24 cm |
ISBN: | 9783110524628 3110524627 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044957399 | ||
003 | DE-604 | ||
005 | 20200702 | ||
007 | t | ||
008 | 180523s2018 gw a||| |||| 00||| eng d | ||
016 | 7 | |a 1137843918 |2 DE-101 | |
020 | |a 9783110524628 |c Broschur |9 978-3-11-052462-8 | ||
020 | |a 3110524627 |9 3-11-052462-7 | ||
035 | |a (OCoLC)1033829392 | ||
035 | |a (DE-599)DNB1137843918 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-634 |a DE-20 |a DE-703 |a DE-573 | ||
082 | 0 | |a 515 |2 22/ger | |
084 | |a SK 400 |0 (DE-625)143237: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Zou, Yunzhi |e Verfasser |0 (DE-588)1155862910 |4 aut | |
245 | 1 | 0 | |a Single variable calculus |b a first step |c Yunzhi Zou |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2018] | |
300 | |a X, 414 Seiten |b Illustrationen, Diagramme |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a De Gruyter textbook | |
650 | 0 | 7 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-052785-8 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-052778-0 |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u http://d-nb.info/1137843918/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m X:MVB |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110524628&searchTitles=true |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030350025&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030350025 |
Datensatz im Suchindex
_version_ | 1804178551300161536 |
---|---|
adam_text | CONTENTS
PREFACE * V
1 PREREQUISITES FOR CALCULUS * 1
1.1 OVERVIEW OF CALCULUS * 1
1.2 SETS AND NUMBERS * 6
1.2.1 SETS
-----
6
1.2.2 NUMBERS * 8
1.2.3 THE LEAST UPPER BOUND PROPERTY * 9
1.2.4 THE EXTENDED REAL NUMBER SYSTEM * 11
1.2.5 INTERVALS * 12
1.3 FUNCTIONS * 14
1.3.1 DEFINITION OF A FUNCTION * 14
1.3.2 GRAPH OF A FUNCTION * 17
1.3.3 SOME BASIC FUNCTIONS AND THEIR GRAPHS * 18
1.3.4 BUILDING NEW FUNCTIONS * 20
1.3.5 FUNDAMENTAL ELEMENTARY FUNCTIONS * 31
1.3.6 PROPERTIES OF FUNCTIONS * 32
1.4 EXERCISES * 37
2 LIMITS AND CONTINUITY * 41
2.1 RATES OF CHANGE AND DERIVATIVES * 41
2.2 LIMITS OF A FUNCTION * 42
2.2.1 DEFINITION OF A LIMIT * 42
2.2.2 PROPERTIES OF LIMITS OF FUNCTIONS * 49
2.2.3 LIMIT LAWS
-----
50
2.2.4 ONE-SIDED LIMITS * 55
2.2.5 LIMITS INVOLVING INFINITY AND ASYMPTOTES * 59
2.3 LIMITS OF SEQUENCES * 68
2.3.1 DEFINITIONS AND PROPERTIES * 68
2.3.2 SUBSEQUENCES * 77
2.4 SQUEEZE THEOREM AND CAUCHY*S THEOREM * 78
2.5 INFINITESIMAL FUNCTIONS AND ASYMPTOTIC FUNCTIONS
2.6 CONTINUOUS AND DISCONTINUOUS FUNCTIONS * 91
2.6.1 CONTINUITY AND DISCONTINUITY * 91
2.6.2 CONTINUOUS FUNCTIONS * 94
2.6.3 THEOREMS ON CONTINUOUS FUNCTIONS * 99
2.6.4 UNIFORM CONTINUITY * 107
2.7 SOME PROOFS IN CHAPTER 2 * 108
2.8 EXERCISES
-----
114
3 THE DERIVATIVE * 121
3.1 DERIVATIVE OF A FUNCTION AT A POINT * 121
3.1.1 INSTANTANEOUS RATES OF CHANGE AND DERIVATIVES REVISITED * 121
3.1.2 ONE-SIDED DERIVATIVES * 128
3.1.3 A FUNCTION MAY FAIL TO HAVE A DERIVATIVE AT A POINT * 129
3.2 DERIVATIVE AS A FUNCTION * 133
3.2.1 GRAPHING THE DERIVATIVE OF A FUNCTION * 134
3.2.2 DERIVATIVES OF SOME BASIC FUNCTIONS * 135
3.3 DERIVATIVE LAWS * 139
3.4 DERIVATIVE OF AN INVERSE FUNCTION * 143
3.5 DIFFERENTIATING A COMPOSITE FUNCTION - THE CHAIN RULE * 147
3.6 DERIVATIVES OF HIGHER ORDERS * 152
3.7 IMPLICIT DIFFERENTIATION * 154
3.8 FUNCTIONS DEFINED BY PARAMETRIC AND POLAR EQUATIONS * 159
3.8.1 FUNCTIONS DEFINED BY PARAMETRIC EQUATIONS * 159
3.8.2 POLAR CURVES * 163
3.9 RELATED RATES OF CHANGE * 166
3.10 THE TANGENT LINE APPROXIMATION AND THE DIFFERENTIAL * 167
3.10.1 LINEARIZATION * 167
3.10.2 DIFFERENTIALS * 170
3.11 DERIVATIVE RULES - SUMMARY * 174
3.12 EXERCISES * 175
4 APPLICATIONS OF THE DERIVATIVE * 181
4.1 EXTREME VALUES AND THE CANDIDATE THEOREM * 181
4.2 THE MEAN VALUE THEOREM * 188
4.3 MONOTONIE FUNCTIONS AND THE FIRST DERIVATIVE TEST * 196
4.3.1 MONOTONIE FUNCTIONS
-----
196
4.3.2 THE FIRST DERIVATIVE TEST
-----
199
4.4 EXTENDED MEAN VALUE THEOREM AND THE L*HOEPITAL RULES * 201
4.4.1 EXTENDED MEAN VALUE THEOREM * 201
4.4.2 THE INDETERMINATE FORMS
OO-OO,
AND
OXOO
* 203
4.5 TAYLOR*S THEOREM * 209
4.5.1 THE ERROR ANALYSIS FOR THE LINEAR APPROXIMATION * 209
4.5.2 THE QUADRATIC APPROXIMATION * 210
4.5.3 TAYLOR*S THEOREM
-----
214
4.6 CONCAVE FUNCTIONS AND THE SECOND DERIVATIVE TEST * 219
4.6.1 CONCAVE FUNCTIONS * 219
4.6.2 THE SECOND DERIVATIVE TEST * 225
4.7 EXTREME VALUES OF FUNCTIONS REVISITED * 227
4.8 CURVE SKETCHING * 231
4.9 SOLVING EQUATIONS NUMERICALLY * 234
4.9.1 DECIMAL SEARCH * 234
4.9.2 NEWTON*S METHOD
-----
236
4.10 CURVATURES AND THE DIFFERENTIAL OF THE ARC LENGTH * 238
4.11 EXERCISES
-----
243
5 THE DEFINITE INTEGRAL * 249
5.1 DEFINITE INTEGRALS AND PROPERTIES * 249
5.1.1 INTRODUCTION
-----
249
5.1.2 PROPERTIES OF THE DEFINITE INTEGRAL * 259
5.1.3 INTERPRETING
J^F(X)DX
IN TERMS OF AREA * 265
5.1.4 INTERPRETING
V(T) DT
AS A DISTANCE OR DISPLACEMENT * 267
5.2 THE FUNDAMENTAL THEOREM OF CALCULUS * 267
5.3 NUMERICAL INTEGRATION * 275
5.3.1 TRAPEZOIDAL RULE * 276
5.3.2 SIMPSON*S RULE
-----
277
5.4 EXERCISES * 279
6 TECHNIQUES FOR INTEGRATION AND IMPROPER INTEGRALS * 285
6.1 INDEFINITE INTEGRALS * 285
6.1.1 DEFINITION OF INDEFINITE INTEGRALS AND BASIC ANTIDERIVATIVES * 285
6.1.2 DIFFERENTIAL EQUATIONS * 289
6.1.3 SUBSTITUTION IN INDEFINITE INTEGRALS * 293
6.1.4 FURTHER RESULTS USING INTEGRATION BY SUBSTITUTION * 297
6.1.5 INTEGRATION BY PARTS * 300
6.1.6 PARTIAL FRACTIONS IN INTEGRATION * 304
6.1.7 RATIONALIZING SUBSTITUTIONS * 312
6.2 SUBSTITUTION IN DEFINITE INTEGRALS * 313
6.3 INTEGRATION BY PARTS IN DEFINITE INTEGRALS * 317
6.4 IMPROPER INTEGRALS * 318
6.4.1 IMPROPER INTEGRALS OF THE FIRST KIND * 318
6.4.2 IMPROPER INTEGRALS OF THE SECOND KIND * 322
6.5 EXERCISES
-----
326
7 APPLICATIONS OF THE DEFINITE INTEGRAL * 333
7.1 AREAS, VOLUMES, AND ARC LENGTHS * 333
7.1.1 THE AREA OF THE REGION BETWEEN TWO CURVES * 333
7.1.2 VOLUMES OF SOLIDS
-----
337
7.1.3 ARC LENGTH * 339
7.2 APPLICATIONS IN OTHER DISCIPLINES * 344
7.2.1 DISPLACEMENT AND DISTANCE * 344
7.2.2 WORK DONE BY A FORCE
-----
345
7.2.3 FLUID PRESSURE * 346
7.2.4 CENTER OF MASS * 347
7.2.5 PROBABILITY
-----
349
7.3 EXERCISES * 350
8 INFINITE SERIES, SEQUENCES, AND APPROXIMATIONS * 355
8.1 INFINITE SEQUENCES * 355
8.2 INFINITE SERIES * 357
8.2.1 DEFINITION OF INFINITE SERIES * 357
8.2.2 PROPERTIES OF CONVERGENT SERIES * 359
8.3 TESTS FOR CONVERGENCE * 363
8.3.1 SERIES WITH NONNEGATIVE TERMS * 363
8.3.2 SERIES WITH NEGATIVE AND POSITIVE TERMS * 371
8.4 POWER SERIES AND TAYLOR SERIES * 375
8.4.1 POWER SERIES * 375
8.4.2 WORKING WITH POWER SERIES * 381
8.4.3 TAYLOR SERIES * 383
8.4.4 APPLICATIONS OF POWER SERIES * 391
8.5 FOURIER SERIES * 393
8.5.1 FOURIER SERIES EXPANSION WITH PERIOD 2
N
* 394
8.5.2 FOURIER COSINE AND SINE SERIES WITH PERIOD
2N
* 399
8.5.3 THE FOURIER SERIES EXPANSION WITH PERIOD
21
* 400
8.5.4 FOURIER SERIES WITH COMPLEX TERMS * 403
8.6 EXERCISES * 404
INDEX * 411
|
any_adam_object | 1 |
author | Zou, Yunzhi |
author_GND | (DE-588)1155862910 |
author_facet | Zou, Yunzhi |
author_role | aut |
author_sort | Zou, Yunzhi |
author_variant | y z yz |
building | Verbundindex |
bvnumber | BV044957399 |
classification_rvk | SK 400 |
ctrlnum | (OCoLC)1033829392 (DE-599)DNB1137843918 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01906nam a2200457 c 4500</leader><controlfield tag="001">BV044957399</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200702 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180523s2018 gw a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1137843918</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110524628</subfield><subfield code="c">Broschur</subfield><subfield code="9">978-3-11-052462-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110524627</subfield><subfield code="9">3-11-052462-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1033829392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1137843918</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zou, Yunzhi</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1155862910</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Single variable calculus</subfield><subfield code="b">a first step</subfield><subfield code="c">Yunzhi Zou</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 414 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter textbook</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-052785-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-052778-0</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://d-nb.info/1137843918/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110524628&searchTitles=true</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030350025&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030350025</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV044957399 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:05:46Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110524628 3110524627 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030350025 |
oclc_num | 1033829392 |
open_access_boolean | |
owner | DE-634 DE-20 DE-703 DE-573 |
owner_facet | DE-634 DE-20 DE-703 DE-573 |
physical | X, 414 Seiten Illustrationen, Diagramme 24 cm |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter textbook |
spelling | Zou, Yunzhi Verfasser (DE-588)1155862910 aut Single variable calculus a first step Yunzhi Zou Berlin ; Boston De Gruyter [2018] X, 414 Seiten Illustrationen, Diagramme 24 cm txt rdacontent n rdamedia nc rdacarrier De Gruyter textbook Infinitesimalrechnung (DE-588)4072798-1 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Infinitesimalrechnung (DE-588)4072798-1 s DE-604 Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, EPUB 978-3-11-052785-8 Erscheint auch als Online-Ausgabe, PDF 978-3-11-052778-0 B:DE-101 application/pdf http://d-nb.info/1137843918/04 Inhaltsverzeichnis X:MVB http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110524628&searchTitles=true DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030350025&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Zou, Yunzhi Single variable calculus a first step Infinitesimalrechnung (DE-588)4072798-1 gnd |
subject_GND | (DE-588)4072798-1 (DE-588)4123623-3 |
title | Single variable calculus a first step |
title_auth | Single variable calculus a first step |
title_exact_search | Single variable calculus a first step |
title_full | Single variable calculus a first step Yunzhi Zou |
title_fullStr | Single variable calculus a first step Yunzhi Zou |
title_full_unstemmed | Single variable calculus a first step Yunzhi Zou |
title_short | Single variable calculus |
title_sort | single variable calculus a first step |
title_sub | a first step |
topic | Infinitesimalrechnung (DE-588)4072798-1 gnd |
topic_facet | Infinitesimalrechnung Lehrbuch |
url | http://d-nb.info/1137843918/04 http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110524628&searchTitles=true http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030350025&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zouyunzhi singlevariablecalculusafirststep AT walterdegruytergmbhcokg singlevariablecalculusafirststep |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis