Genome-Wide Association Studies and Genomic Prediction:
With the detailed genomic information that is now becoming available, we have a plethora of data that allows researchers to address questions in a variety of areas. Genome-wide association studies (GWAS) have become a vital approach to identify candidate regions associated with complex diseases in h...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Totowa, NJ
Humana Press
2013
|
Schriftenreihe: | Methods in Molecular Biology, Methods and Protocols
1019 |
Schlagworte: | |
Online-Zugang: | UBR01 TUM01 Volltext |
Zusammenfassung: | With the detailed genomic information that is now becoming available, we have a plethora of data that allows researchers to address questions in a variety of areas. Genome-wide association studies (GWAS) have become a vital approach to identify candidate regions associated with complex diseases in human medicine, production traits in agriculture, and variation in wild populations. Genomic prediction goes a step further, attempting to predict phenotypic variation in these traits from genomic information. Genome-Wide Association Studies and Genomic Prediction pulls together expert contributions to address this important area of study. The volume begins with a section covering the phenotypes of interest as well as design issues for GWAS, then moves on to discuss efficient computational methods to store and handle large datasets, quality control measures, phasing, haplotype inference, and imputation. Later chapters deal with statistical approaches to data analysis where the experimental objective is either to confirm the biology by identifying genomic regions associated to a trait or to use the data to make genomic predictions about a future phenotypic outcome (e.g. predict onset of disease). As part of the Methods in Molecular Biology series, chapters provide helpful, real-world implementation advice |
Beschreibung: | 1 Online-Ressource (XI, 566 p. 67 illus., 31 illus. in color) |
ISBN: | 9781627034470 |
DOI: | 10.1007/978-1-62703-447-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044952109 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180517s2013 |||| o||u| ||||||eng d | ||
020 | |a 9781627034470 |9 978-1-62703-447-0 | ||
024 | 7 | |a 10.1007/978-1-62703-447-0 |2 doi | |
035 | |a (ZDB-2-PRO)978-1-62703-447-0 | ||
035 | |a (OCoLC)855544037 | ||
035 | |a (DE-599)BVBBV044952109 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-91 | ||
082 | 0 | |a 570.285 |2 23 | |
084 | |a WG 9100 |0 (DE-625)148626: |2 rvk | ||
245 | 1 | 0 | |a Genome-Wide Association Studies and Genomic Prediction |c edited by Cedric Gondro, Julius van der Werf, Ben Hayes |
264 | 1 | |a Totowa, NJ |b Humana Press |c 2013 | |
300 | |a 1 Online-Ressource (XI, 566 p. 67 illus., 31 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Methods in Molecular Biology, Methods and Protocols |v 1019 | |
520 | |a With the detailed genomic information that is now becoming available, we have a plethora of data that allows researchers to address questions in a variety of areas. Genome-wide association studies (GWAS) have become a vital approach to identify candidate regions associated with complex diseases in human medicine, production traits in agriculture, and variation in wild populations. Genomic prediction goes a step further, attempting to predict phenotypic variation in these traits from genomic information. Genome-Wide Association Studies and Genomic Prediction pulls together expert contributions to address this important area of study. The volume begins with a section covering the phenotypes of interest as well as design issues for GWAS, then moves on to discuss efficient computational methods to store and handle large datasets, quality control measures, phasing, haplotype inference, and imputation. Later chapters deal with statistical approaches to data analysis where the experimental objective is either to confirm the biology by identifying genomic regions associated to a trait or to use the data to make genomic predictions about a future phenotypic outcome (e.g. predict onset of disease). As part of the Methods in Molecular Biology series, chapters provide helpful, real-world implementation advice | ||
650 | 4 | |a Life Sciences | |
650 | 4 | |a Bioinformatics | |
650 | 4 | |a Human Genetics | |
650 | 4 | |a Life sciences | |
650 | 4 | |a Human genetics | |
650 | 4 | |a Bioinformatics | |
650 | 0 | 7 | |a Genetische Variabilität |0 (DE-588)4264352-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Allel |0 (DE-588)4271150-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Genanalyse |0 (DE-588)4200230-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Genom |0 (DE-588)4156640-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Genom |0 (DE-588)4156640-3 |D s |
689 | 0 | 1 | |a Genanalyse |0 (DE-588)4200230-8 |D s |
689 | 0 | 2 | |a Allel |0 (DE-588)4271150-2 |D s |
689 | 0 | 3 | |a Genetische Variabilität |0 (DE-588)4264352-1 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Gondro, Cedric |4 edt | |
700 | 1 | |a van der Werf, Julius |4 edt | |
700 | 1 | |a Hayes, Ben |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781627034463 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-62703-447-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-PRO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030344865 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-62703-447-0 |l UBR01 |p ZDB-2-PRO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-62703-447-0 |l TUM01 |p ZDB-2-PRO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178541595590656 |
---|---|
any_adam_object | |
author2 | Gondro, Cedric van der Werf, Julius Hayes, Ben |
author2_role | edt edt edt |
author2_variant | c g cg d w j v dwj dwjv b h bh |
author_facet | Gondro, Cedric van der Werf, Julius Hayes, Ben |
building | Verbundindex |
bvnumber | BV044952109 |
classification_rvk | WG 9100 |
collection | ZDB-2-PRO |
ctrlnum | (ZDB-2-PRO)978-1-62703-447-0 (OCoLC)855544037 (DE-599)BVBBV044952109 |
dewey-full | 570.285 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 570 - Biology |
dewey-raw | 570.285 |
dewey-search | 570.285 |
dewey-sort | 3570.285 |
dewey-tens | 570 - Biology |
discipline | Biologie |
doi_str_mv | 10.1007/978-1-62703-447-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03760nmm a2200625zcb4500</leader><controlfield tag="001">BV044952109</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180517s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781627034470</subfield><subfield code="9">978-1-62703-447-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-62703-447-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-PRO)978-1-62703-447-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)855544037</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044952109</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570.285</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WG 9100</subfield><subfield code="0">(DE-625)148626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genome-Wide Association Studies and Genomic Prediction</subfield><subfield code="c">edited by Cedric Gondro, Julius van der Werf, Ben Hayes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Totowa, NJ</subfield><subfield code="b">Humana Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 566 p. 67 illus., 31 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Methods in Molecular Biology, Methods and Protocols</subfield><subfield code="v">1019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the detailed genomic information that is now becoming available, we have a plethora of data that allows researchers to address questions in a variety of areas. Genome-wide association studies (GWAS) have become a vital approach to identify candidate regions associated with complex diseases in human medicine, production traits in agriculture, and variation in wild populations. Genomic prediction goes a step further, attempting to predict phenotypic variation in these traits from genomic information. Genome-Wide Association Studies and Genomic Prediction pulls together expert contributions to address this important area of study. The volume begins with a section covering the phenotypes of interest as well as design issues for GWAS, then moves on to discuss efficient computational methods to store and handle large datasets, quality control measures, phasing, haplotype inference, and imputation. Later chapters deal with statistical approaches to data analysis where the experimental objective is either to confirm the biology by identifying genomic regions associated to a trait or to use the data to make genomic predictions about a future phenotypic outcome (e.g. predict onset of disease). As part of the Methods in Molecular Biology series, chapters provide helpful, real-world implementation advice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Life Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human Genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Life sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Genetische Variabilität</subfield><subfield code="0">(DE-588)4264352-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Allel</subfield><subfield code="0">(DE-588)4271150-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Genanalyse</subfield><subfield code="0">(DE-588)4200230-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Genom</subfield><subfield code="0">(DE-588)4156640-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Genom</subfield><subfield code="0">(DE-588)4156640-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Genanalyse</subfield><subfield code="0">(DE-588)4200230-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Allel</subfield><subfield code="0">(DE-588)4271150-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Genetische Variabilität</subfield><subfield code="0">(DE-588)4264352-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gondro, Cedric</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van der Werf, Julius</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hayes, Ben</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781627034463</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-62703-447-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PRO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030344865</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-62703-447-0</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-PRO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-62703-447-0</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-PRO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV044952109 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:05:37Z |
institution | BVB |
isbn | 9781627034470 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030344865 |
oclc_num | 855544037 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-91 DE-BY-TUM |
owner_facet | DE-355 DE-BY-UBR DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (XI, 566 p. 67 illus., 31 illus. in color) |
psigel | ZDB-2-PRO |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Humana Press |
record_format | marc |
series2 | Methods in Molecular Biology, Methods and Protocols |
spelling | Genome-Wide Association Studies and Genomic Prediction edited by Cedric Gondro, Julius van der Werf, Ben Hayes Totowa, NJ Humana Press 2013 1 Online-Ressource (XI, 566 p. 67 illus., 31 illus. in color) txt rdacontent c rdamedia cr rdacarrier Methods in Molecular Biology, Methods and Protocols 1019 With the detailed genomic information that is now becoming available, we have a plethora of data that allows researchers to address questions in a variety of areas. Genome-wide association studies (GWAS) have become a vital approach to identify candidate regions associated with complex diseases in human medicine, production traits in agriculture, and variation in wild populations. Genomic prediction goes a step further, attempting to predict phenotypic variation in these traits from genomic information. Genome-Wide Association Studies and Genomic Prediction pulls together expert contributions to address this important area of study. The volume begins with a section covering the phenotypes of interest as well as design issues for GWAS, then moves on to discuss efficient computational methods to store and handle large datasets, quality control measures, phasing, haplotype inference, and imputation. Later chapters deal with statistical approaches to data analysis where the experimental objective is either to confirm the biology by identifying genomic regions associated to a trait or to use the data to make genomic predictions about a future phenotypic outcome (e.g. predict onset of disease). As part of the Methods in Molecular Biology series, chapters provide helpful, real-world implementation advice Life Sciences Bioinformatics Human Genetics Life sciences Human genetics Genetische Variabilität (DE-588)4264352-1 gnd rswk-swf Allel (DE-588)4271150-2 gnd rswk-swf Genanalyse (DE-588)4200230-8 gnd rswk-swf Genom (DE-588)4156640-3 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Genom (DE-588)4156640-3 s Genanalyse (DE-588)4200230-8 s Allel (DE-588)4271150-2 s Genetische Variabilität (DE-588)4264352-1 s 2\p DE-604 Gondro, Cedric edt van der Werf, Julius edt Hayes, Ben edt Erscheint auch als Druck-Ausgabe 9781627034463 https://doi.org/10.1007/978-1-62703-447-0 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Genome-Wide Association Studies and Genomic Prediction Life Sciences Bioinformatics Human Genetics Life sciences Human genetics Genetische Variabilität (DE-588)4264352-1 gnd Allel (DE-588)4271150-2 gnd Genanalyse (DE-588)4200230-8 gnd Genom (DE-588)4156640-3 gnd |
subject_GND | (DE-588)4264352-1 (DE-588)4271150-2 (DE-588)4200230-8 (DE-588)4156640-3 (DE-588)4143413-4 |
title | Genome-Wide Association Studies and Genomic Prediction |
title_auth | Genome-Wide Association Studies and Genomic Prediction |
title_exact_search | Genome-Wide Association Studies and Genomic Prediction |
title_full | Genome-Wide Association Studies and Genomic Prediction edited by Cedric Gondro, Julius van der Werf, Ben Hayes |
title_fullStr | Genome-Wide Association Studies and Genomic Prediction edited by Cedric Gondro, Julius van der Werf, Ben Hayes |
title_full_unstemmed | Genome-Wide Association Studies and Genomic Prediction edited by Cedric Gondro, Julius van der Werf, Ben Hayes |
title_short | Genome-Wide Association Studies and Genomic Prediction |
title_sort | genome wide association studies and genomic prediction |
topic | Life Sciences Bioinformatics Human Genetics Life sciences Human genetics Genetische Variabilität (DE-588)4264352-1 gnd Allel (DE-588)4271150-2 gnd Genanalyse (DE-588)4200230-8 gnd Genom (DE-588)4156640-3 gnd |
topic_facet | Life Sciences Bioinformatics Human Genetics Life sciences Human genetics Genetische Variabilität Allel Genanalyse Genom Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-62703-447-0 |
work_keys_str_mv | AT gondrocedric genomewideassociationstudiesandgenomicprediction AT vanderwerfjulius genomewideassociationstudiesandgenomicprediction AT hayesben genomewideassociationstudiesandgenomicprediction |