Doherty power amplifiers: from fundamentals to advanced design methods
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
Elsevier, AP, Academic Press
[2018]
|
Schlagworte: | |
Beschreibung: | ix, 174 Seiten Illustrationen, Diagramme |
ISBN: | 9780128098677 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044937260 | ||
003 | DE-604 | ||
005 | 20190514 | ||
007 | t | ||
008 | 180509s2018 a||| |||| 00||| eng d | ||
020 | |a 9780128098677 |9 978-0-12-809867-7 | ||
035 | |a (OCoLC)1039486866 | ||
035 | |a (DE-599)BVBBV044937260 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-83 | ||
084 | |a ZN 5830 |0 (DE-625)157485: |2 rvk | ||
100 | 1 | |a Kim, Bumman |e Verfasser |4 aut | |
245 | 1 | 0 | |a Doherty power amplifiers |b from fundamentals to advanced design methods |c Bumman Kim |
264 | 1 | |a London |b Elsevier, AP, Academic Press |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a ix, 174 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a Front Cover; Doherty Power Amplifiers: From Fundamentals to Advanced Design Methods; Copyright; Contents; Acknowledgments; Chapter One: Introduction to Doherty Power Amplifier; 1.1. Historical Survey; 1.2. Basic Operation Principle; 1.2.1. Load Modulation Behavior; 1.2.1.1. Load Impedance Modulation; 1.2.1.2. Voltage, Current, and Load Impedance Profiles; 1.2.1.3. Load Lines for the Modulated Loads; 1.2.2. Efficiency and Gain Characteristics; 1.2.2.1. Efficiency; 1.2.2.2. Gain; 1.3. Offset Line Technique; 1.3.1. Realization of Doherty Amplifier; 1.3.2. Operation of the Offset Line | |
505 | 8 | |a 1.3.2.1. Offset Line at Carrier Amplifier1.3.2.2. Offset Line at Peaking Amplifier; 1.4. Other Load Modulation Methods; 1.4.1. Voltage Combined Doherty Amplifier; 1.4.1.1. Series Configured Doherty Amplifier in Voltage Combining Mode; 1.4.1.2. Transformer Based Power Amplifier; 1.4.1.3. Transformer Based Voltage Combined Doherty Amplifier; 1.4.2. Inverted Load Modulation; 1.4.3. Direct Matching at the First Peak Efficiency Point; 1.4.3.1. Using ROPT/2 Inverter; 1.4.3.2. Using 2ROPT Inverter; Further Reading; Chapter Two: Realization of Proper Load Modulation Using a Real Transistor | |
505 | 8 | |a 2.1. Correction for Lower Current of Peaking Amplifier2.1.1. Uneven Drive Through Coupler; 2.1.1.1. Current Ratio of Peaking Amplifier Versus Carrier Amplifier; 2.1.1.2. Efficiency of the Asymmetric Amplifier With Uneven Power Drive; 2.1.2. Gate Bias Adaptation to Compensate the Low Current of Peaking Amplifier; 2.1.2.1. Peaking Amplifier Adaptation; 2.1.2.2. Adaptation of the Both Amplifiers; 2.2. Knee Voltage Effect on Doherty Amplifier Operation; 2.2.1. Doherty Amplifier Operation With Knee Voltage; 2.2.2. Load Modulation Behavior of Doherty Amplifier With Optimized Carrier Amplifier | |
505 | 8 | |a 2.3. Offset Line Design for Compensation of Peaking Amplifier Phase Variation2.3.1. Phase Variation of the Peaking Amplifier; 2.3.2. Load Modulation of Peaking Amplifier With the Additional Offset Lines; 2.3.3. The Load Modulation of the Carrier Amplifier With the Additional Offset Lines; 2.3.4. Simulation Results With Real Device; Further Reading; Chapter Three: Enhancement of Doherty Amplifier; 3.1. Doherty Amplifier With Asymmetric Vds; 3.2. Optimized Design of GaN HEMT Doherty Power Amplifier With High Gain and High Efficiency; 3.2.1. Optimized Design of Carrier and Peaking Amplifiers | |
505 | 8 | |a 3.2.2. Operation of the Optimally Matched Doherty Amplifier3.3. Optimized Peaking Amplifier Design for Doherty Amplifier; 3.3.1. Optimized Design of Peaking Amplifier for Proper Doherty Operation; 3.3.2. Simulation and Experimental Results; 3.4. Saturated Doherty Amplifier; 3.4.1. Operational Principle of the Saturated Doherty Amplifier; 3.4.2. Efficiency and Linearity of the Saturated Doherty Amplifier; 3.4.2.1. Efficiency of the Saturated Doherty Amplifier; 3.4.2.2. Linearity of the Saturated Doherty Amplifier; 3.4.3. Improved Harmonic Control Circuit for Saturated Amplifier | |
650 | 0 | 7 | |a Hochfrequenzverstärker |0 (DE-588)4160154-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikrowellenschaltung |0 (DE-588)4169891-5 |2 gnd |9 rswk-swf |
653 | 0 | |a Power amplifiers | |
653 | 0 | |a Amplifiers, Radio frequency | |
653 | 0 | |a TECHNOLOGY & ENGINEERING / Mechanical | |
653 | 0 | |a Amplifiers, Radio frequency | |
653 | 0 | |a Power amplifiers | |
689 | 0 | 0 | |a Hochfrequenzverstärker |0 (DE-588)4160154-3 |D s |
689 | 0 | 1 | |a Mikrowellenschaltung |0 (DE-588)4169891-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 9780128098752 |
999 | |a oai:aleph.bib-bvb.de:BVB01-030330223 |
Datensatz im Suchindex
_version_ | 1804178519422402560 |
---|---|
any_adam_object | |
author | Kim, Bumman |
author_facet | Kim, Bumman |
author_role | aut |
author_sort | Kim, Bumman |
author_variant | b k bk |
building | Verbundindex |
bvnumber | BV044937260 |
classification_rvk | ZN 5830 |
contents | Front Cover; Doherty Power Amplifiers: From Fundamentals to Advanced Design Methods; Copyright; Contents; Acknowledgments; Chapter One: Introduction to Doherty Power Amplifier; 1.1. Historical Survey; 1.2. Basic Operation Principle; 1.2.1. Load Modulation Behavior; 1.2.1.1. Load Impedance Modulation; 1.2.1.2. Voltage, Current, and Load Impedance Profiles; 1.2.1.3. Load Lines for the Modulated Loads; 1.2.2. Efficiency and Gain Characteristics; 1.2.2.1. Efficiency; 1.2.2.2. Gain; 1.3. Offset Line Technique; 1.3.1. Realization of Doherty Amplifier; 1.3.2. Operation of the Offset Line 1.3.2.1. Offset Line at Carrier Amplifier1.3.2.2. Offset Line at Peaking Amplifier; 1.4. Other Load Modulation Methods; 1.4.1. Voltage Combined Doherty Amplifier; 1.4.1.1. Series Configured Doherty Amplifier in Voltage Combining Mode; 1.4.1.2. Transformer Based Power Amplifier; 1.4.1.3. Transformer Based Voltage Combined Doherty Amplifier; 1.4.2. Inverted Load Modulation; 1.4.3. Direct Matching at the First Peak Efficiency Point; 1.4.3.1. Using ROPT/2 Inverter; 1.4.3.2. Using 2ROPT Inverter; Further Reading; Chapter Two: Realization of Proper Load Modulation Using a Real Transistor 2.1. Correction for Lower Current of Peaking Amplifier2.1.1. Uneven Drive Through Coupler; 2.1.1.1. Current Ratio of Peaking Amplifier Versus Carrier Amplifier; 2.1.1.2. Efficiency of the Asymmetric Amplifier With Uneven Power Drive; 2.1.2. Gate Bias Adaptation to Compensate the Low Current of Peaking Amplifier; 2.1.2.1. Peaking Amplifier Adaptation; 2.1.2.2. Adaptation of the Both Amplifiers; 2.2. Knee Voltage Effect on Doherty Amplifier Operation; 2.2.1. Doherty Amplifier Operation With Knee Voltage; 2.2.2. Load Modulation Behavior of Doherty Amplifier With Optimized Carrier Amplifier 2.3. Offset Line Design for Compensation of Peaking Amplifier Phase Variation2.3.1. Phase Variation of the Peaking Amplifier; 2.3.2. Load Modulation of Peaking Amplifier With the Additional Offset Lines; 2.3.3. The Load Modulation of the Carrier Amplifier With the Additional Offset Lines; 2.3.4. Simulation Results With Real Device; Further Reading; Chapter Three: Enhancement of Doherty Amplifier; 3.1. Doherty Amplifier With Asymmetric Vds; 3.2. Optimized Design of GaN HEMT Doherty Power Amplifier With High Gain and High Efficiency; 3.2.1. Optimized Design of Carrier and Peaking Amplifiers 3.2.2. Operation of the Optimally Matched Doherty Amplifier3.3. Optimized Peaking Amplifier Design for Doherty Amplifier; 3.3.1. Optimized Design of Peaking Amplifier for Proper Doherty Operation; 3.3.2. Simulation and Experimental Results; 3.4. Saturated Doherty Amplifier; 3.4.1. Operational Principle of the Saturated Doherty Amplifier; 3.4.2. Efficiency and Linearity of the Saturated Doherty Amplifier; 3.4.2.1. Efficiency of the Saturated Doherty Amplifier; 3.4.2.2. Linearity of the Saturated Doherty Amplifier; 3.4.3. Improved Harmonic Control Circuit for Saturated Amplifier |
ctrlnum | (OCoLC)1039486866 (DE-599)BVBBV044937260 |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04441nam a2200469 c 4500</leader><controlfield tag="001">BV044937260</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190514 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180509s2018 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128098677</subfield><subfield code="9">978-0-12-809867-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1039486866</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044937260</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 5830</subfield><subfield code="0">(DE-625)157485:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Bumman</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Doherty power amplifiers</subfield><subfield code="b">from fundamentals to advanced design methods</subfield><subfield code="c">Bumman Kim</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Elsevier, AP, Academic Press</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 174 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover; Doherty Power Amplifiers: From Fundamentals to Advanced Design Methods; Copyright; Contents; Acknowledgments; Chapter One: Introduction to Doherty Power Amplifier; 1.1. Historical Survey; 1.2. Basic Operation Principle; 1.2.1. Load Modulation Behavior; 1.2.1.1. Load Impedance Modulation; 1.2.1.2. Voltage, Current, and Load Impedance Profiles; 1.2.1.3. Load Lines for the Modulated Loads; 1.2.2. Efficiency and Gain Characteristics; 1.2.2.1. Efficiency; 1.2.2.2. Gain; 1.3. Offset Line Technique; 1.3.1. Realization of Doherty Amplifier; 1.3.2. Operation of the Offset Line</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.3.2.1. Offset Line at Carrier Amplifier1.3.2.2. Offset Line at Peaking Amplifier; 1.4. Other Load Modulation Methods; 1.4.1. Voltage Combined Doherty Amplifier; 1.4.1.1. Series Configured Doherty Amplifier in Voltage Combining Mode; 1.4.1.2. Transformer Based Power Amplifier; 1.4.1.3. Transformer Based Voltage Combined Doherty Amplifier; 1.4.2. Inverted Load Modulation; 1.4.3. Direct Matching at the First Peak Efficiency Point; 1.4.3.1. Using ROPT/2 Inverter; 1.4.3.2. Using 2ROPT Inverter; Further Reading; Chapter Two: Realization of Proper Load Modulation Using a Real Transistor</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1. Correction for Lower Current of Peaking Amplifier2.1.1. Uneven Drive Through Coupler; 2.1.1.1. Current Ratio of Peaking Amplifier Versus Carrier Amplifier; 2.1.1.2. Efficiency of the Asymmetric Amplifier With Uneven Power Drive; 2.1.2. Gate Bias Adaptation to Compensate the Low Current of Peaking Amplifier; 2.1.2.1. Peaking Amplifier Adaptation; 2.1.2.2. Adaptation of the Both Amplifiers; 2.2. Knee Voltage Effect on Doherty Amplifier Operation; 2.2.1. Doherty Amplifier Operation With Knee Voltage; 2.2.2. Load Modulation Behavior of Doherty Amplifier With Optimized Carrier Amplifier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3. Offset Line Design for Compensation of Peaking Amplifier Phase Variation2.3.1. Phase Variation of the Peaking Amplifier; 2.3.2. Load Modulation of Peaking Amplifier With the Additional Offset Lines; 2.3.3. The Load Modulation of the Carrier Amplifier With the Additional Offset Lines; 2.3.4. Simulation Results With Real Device; Further Reading; Chapter Three: Enhancement of Doherty Amplifier; 3.1. Doherty Amplifier With Asymmetric Vds; 3.2. Optimized Design of GaN HEMT Doherty Power Amplifier With High Gain and High Efficiency; 3.2.1. Optimized Design of Carrier and Peaking Amplifiers</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.2. Operation of the Optimally Matched Doherty Amplifier3.3. Optimized Peaking Amplifier Design for Doherty Amplifier; 3.3.1. Optimized Design of Peaking Amplifier for Proper Doherty Operation; 3.3.2. Simulation and Experimental Results; 3.4. Saturated Doherty Amplifier; 3.4.1. Operational Principle of the Saturated Doherty Amplifier; 3.4.2. Efficiency and Linearity of the Saturated Doherty Amplifier; 3.4.2.1. Efficiency of the Saturated Doherty Amplifier; 3.4.2.2. Linearity of the Saturated Doherty Amplifier; 3.4.3. Improved Harmonic Control Circuit for Saturated Amplifier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochfrequenzverstärker</subfield><subfield code="0">(DE-588)4160154-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrowellenschaltung</subfield><subfield code="0">(DE-588)4169891-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Power amplifiers</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Amplifiers, Radio frequency</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">TECHNOLOGY & ENGINEERING / Mechanical</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Amplifiers, Radio frequency</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Power amplifiers</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hochfrequenzverstärker</subfield><subfield code="0">(DE-588)4160154-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mikrowellenschaltung</subfield><subfield code="0">(DE-588)4169891-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">9780128098752</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030330223</subfield></datafield></record></collection> |
id | DE-604.BV044937260 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:05:16Z |
institution | BVB |
isbn | 9780128098677 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030330223 |
oclc_num | 1039486866 |
open_access_boolean | |
owner | DE-29T DE-83 |
owner_facet | DE-29T DE-83 |
physical | ix, 174 Seiten Illustrationen, Diagramme |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Elsevier, AP, Academic Press |
record_format | marc |
spelling | Kim, Bumman Verfasser aut Doherty power amplifiers from fundamentals to advanced design methods Bumman Kim London Elsevier, AP, Academic Press [2018] © 2018 ix, 174 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Front Cover; Doherty Power Amplifiers: From Fundamentals to Advanced Design Methods; Copyright; Contents; Acknowledgments; Chapter One: Introduction to Doherty Power Amplifier; 1.1. Historical Survey; 1.2. Basic Operation Principle; 1.2.1. Load Modulation Behavior; 1.2.1.1. Load Impedance Modulation; 1.2.1.2. Voltage, Current, and Load Impedance Profiles; 1.2.1.3. Load Lines for the Modulated Loads; 1.2.2. Efficiency and Gain Characteristics; 1.2.2.1. Efficiency; 1.2.2.2. Gain; 1.3. Offset Line Technique; 1.3.1. Realization of Doherty Amplifier; 1.3.2. Operation of the Offset Line 1.3.2.1. Offset Line at Carrier Amplifier1.3.2.2. Offset Line at Peaking Amplifier; 1.4. Other Load Modulation Methods; 1.4.1. Voltage Combined Doherty Amplifier; 1.4.1.1. Series Configured Doherty Amplifier in Voltage Combining Mode; 1.4.1.2. Transformer Based Power Amplifier; 1.4.1.3. Transformer Based Voltage Combined Doherty Amplifier; 1.4.2. Inverted Load Modulation; 1.4.3. Direct Matching at the First Peak Efficiency Point; 1.4.3.1. Using ROPT/2 Inverter; 1.4.3.2. Using 2ROPT Inverter; Further Reading; Chapter Two: Realization of Proper Load Modulation Using a Real Transistor 2.1. Correction for Lower Current of Peaking Amplifier2.1.1. Uneven Drive Through Coupler; 2.1.1.1. Current Ratio of Peaking Amplifier Versus Carrier Amplifier; 2.1.1.2. Efficiency of the Asymmetric Amplifier With Uneven Power Drive; 2.1.2. Gate Bias Adaptation to Compensate the Low Current of Peaking Amplifier; 2.1.2.1. Peaking Amplifier Adaptation; 2.1.2.2. Adaptation of the Both Amplifiers; 2.2. Knee Voltage Effect on Doherty Amplifier Operation; 2.2.1. Doherty Amplifier Operation With Knee Voltage; 2.2.2. Load Modulation Behavior of Doherty Amplifier With Optimized Carrier Amplifier 2.3. Offset Line Design for Compensation of Peaking Amplifier Phase Variation2.3.1. Phase Variation of the Peaking Amplifier; 2.3.2. Load Modulation of Peaking Amplifier With the Additional Offset Lines; 2.3.3. The Load Modulation of the Carrier Amplifier With the Additional Offset Lines; 2.3.4. Simulation Results With Real Device; Further Reading; Chapter Three: Enhancement of Doherty Amplifier; 3.1. Doherty Amplifier With Asymmetric Vds; 3.2. Optimized Design of GaN HEMT Doherty Power Amplifier With High Gain and High Efficiency; 3.2.1. Optimized Design of Carrier and Peaking Amplifiers 3.2.2. Operation of the Optimally Matched Doherty Amplifier3.3. Optimized Peaking Amplifier Design for Doherty Amplifier; 3.3.1. Optimized Design of Peaking Amplifier for Proper Doherty Operation; 3.3.2. Simulation and Experimental Results; 3.4. Saturated Doherty Amplifier; 3.4.1. Operational Principle of the Saturated Doherty Amplifier; 3.4.2. Efficiency and Linearity of the Saturated Doherty Amplifier; 3.4.2.1. Efficiency of the Saturated Doherty Amplifier; 3.4.2.2. Linearity of the Saturated Doherty Amplifier; 3.4.3. Improved Harmonic Control Circuit for Saturated Amplifier Hochfrequenzverstärker (DE-588)4160154-3 gnd rswk-swf Mikrowellenschaltung (DE-588)4169891-5 gnd rswk-swf Power amplifiers Amplifiers, Radio frequency TECHNOLOGY & ENGINEERING / Mechanical Hochfrequenzverstärker (DE-588)4160154-3 s Mikrowellenschaltung (DE-588)4169891-5 s DE-604 Erscheint auch als Online-Ausgabe 9780128098752 |
spellingShingle | Kim, Bumman Doherty power amplifiers from fundamentals to advanced design methods Front Cover; Doherty Power Amplifiers: From Fundamentals to Advanced Design Methods; Copyright; Contents; Acknowledgments; Chapter One: Introduction to Doherty Power Amplifier; 1.1. Historical Survey; 1.2. Basic Operation Principle; 1.2.1. Load Modulation Behavior; 1.2.1.1. Load Impedance Modulation; 1.2.1.2. Voltage, Current, and Load Impedance Profiles; 1.2.1.3. Load Lines for the Modulated Loads; 1.2.2. Efficiency and Gain Characteristics; 1.2.2.1. Efficiency; 1.2.2.2. Gain; 1.3. Offset Line Technique; 1.3.1. Realization of Doherty Amplifier; 1.3.2. Operation of the Offset Line 1.3.2.1. Offset Line at Carrier Amplifier1.3.2.2. Offset Line at Peaking Amplifier; 1.4. Other Load Modulation Methods; 1.4.1. Voltage Combined Doherty Amplifier; 1.4.1.1. Series Configured Doherty Amplifier in Voltage Combining Mode; 1.4.1.2. Transformer Based Power Amplifier; 1.4.1.3. Transformer Based Voltage Combined Doherty Amplifier; 1.4.2. Inverted Load Modulation; 1.4.3. Direct Matching at the First Peak Efficiency Point; 1.4.3.1. Using ROPT/2 Inverter; 1.4.3.2. Using 2ROPT Inverter; Further Reading; Chapter Two: Realization of Proper Load Modulation Using a Real Transistor 2.1. Correction for Lower Current of Peaking Amplifier2.1.1. Uneven Drive Through Coupler; 2.1.1.1. Current Ratio of Peaking Amplifier Versus Carrier Amplifier; 2.1.1.2. Efficiency of the Asymmetric Amplifier With Uneven Power Drive; 2.1.2. Gate Bias Adaptation to Compensate the Low Current of Peaking Amplifier; 2.1.2.1. Peaking Amplifier Adaptation; 2.1.2.2. Adaptation of the Both Amplifiers; 2.2. Knee Voltage Effect on Doherty Amplifier Operation; 2.2.1. Doherty Amplifier Operation With Knee Voltage; 2.2.2. Load Modulation Behavior of Doherty Amplifier With Optimized Carrier Amplifier 2.3. Offset Line Design for Compensation of Peaking Amplifier Phase Variation2.3.1. Phase Variation of the Peaking Amplifier; 2.3.2. Load Modulation of Peaking Amplifier With the Additional Offset Lines; 2.3.3. The Load Modulation of the Carrier Amplifier With the Additional Offset Lines; 2.3.4. Simulation Results With Real Device; Further Reading; Chapter Three: Enhancement of Doherty Amplifier; 3.1. Doherty Amplifier With Asymmetric Vds; 3.2. Optimized Design of GaN HEMT Doherty Power Amplifier With High Gain and High Efficiency; 3.2.1. Optimized Design of Carrier and Peaking Amplifiers 3.2.2. Operation of the Optimally Matched Doherty Amplifier3.3. Optimized Peaking Amplifier Design for Doherty Amplifier; 3.3.1. Optimized Design of Peaking Amplifier for Proper Doherty Operation; 3.3.2. Simulation and Experimental Results; 3.4. Saturated Doherty Amplifier; 3.4.1. Operational Principle of the Saturated Doherty Amplifier; 3.4.2. Efficiency and Linearity of the Saturated Doherty Amplifier; 3.4.2.1. Efficiency of the Saturated Doherty Amplifier; 3.4.2.2. Linearity of the Saturated Doherty Amplifier; 3.4.3. Improved Harmonic Control Circuit for Saturated Amplifier Hochfrequenzverstärker (DE-588)4160154-3 gnd Mikrowellenschaltung (DE-588)4169891-5 gnd |
subject_GND | (DE-588)4160154-3 (DE-588)4169891-5 |
title | Doherty power amplifiers from fundamentals to advanced design methods |
title_auth | Doherty power amplifiers from fundamentals to advanced design methods |
title_exact_search | Doherty power amplifiers from fundamentals to advanced design methods |
title_full | Doherty power amplifiers from fundamentals to advanced design methods Bumman Kim |
title_fullStr | Doherty power amplifiers from fundamentals to advanced design methods Bumman Kim |
title_full_unstemmed | Doherty power amplifiers from fundamentals to advanced design methods Bumman Kim |
title_short | Doherty power amplifiers |
title_sort | doherty power amplifiers from fundamentals to advanced design methods |
title_sub | from fundamentals to advanced design methods |
topic | Hochfrequenzverstärker (DE-588)4160154-3 gnd Mikrowellenschaltung (DE-588)4169891-5 gnd |
topic_facet | Hochfrequenzverstärker Mikrowellenschaltung |
work_keys_str_mv | AT kimbumman dohertypoweramplifiersfromfundamentalstoadvanceddesignmethods |