Geometric methods in elastic theory of membranes in liquid crystal phases:
"This is the second edition of the book Geometric Methods in Elastic Theory of Membranes in Liquid Crystal Phases published by World Scientific in 1999. This book gives a comprehensive treatment of the conditions of mechanical equilibrium and the deformation of membranes as a surface problem in...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
[2018]
|
Ausgabe: | Second edition |
Schriftenreihe: | Peking University-World Scientific advanced physics series
vol. 2 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "This is the second edition of the book Geometric Methods in Elastic Theory of Membranes in Liquid Crystal Phases published by World Scientific in 1999. This book gives a comprehensive treatment of the conditions of mechanical equilibrium and the deformation of membranes as a surface problem in differential geometry. It is aimed at readers engaging in the field of investigation of the shape formation of membranes in liquid crystalline state with differential geometry. The material chosen in this book is mainly limited to analytical results. The main changes in this second edition are: we add a chapter (Chapter 4) to explain how to calculate variational problems on a surface with a free edge by using a new mathematical tool ... moving frame method and exterior differential forms ... and how to derive the shape equation and boundary conditions for open lipid membranes through this new method. In addition, we include the recent concise work on chiral lipid membranes as a section in Chapter 5, and in Chapter 6 we mention some topics that we have not fully investigated but are also important to geometric theory of membrane elasticity"... |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xiii, 274 pages |
ISBN: | 9789813227729 9813227729 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV044929969 | ||
003 | DE-604 | ||
005 | 20210413 | ||
007 | t | ||
008 | 180504s2018 si |||| 00||| eng d | ||
010 | |a 017032700 | ||
020 | |a 9789813227729 |9 978-981-3227-72-9 | ||
020 | |a 9813227729 |9 981-3227-72-9 | ||
035 | |a (OCoLC)1056142792 | ||
035 | |a (DE-599)BVBBV044929969 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a si |c SG | ||
049 | |a DE-703 |a DE-19 | ||
050 | 0 | |a QC173.4.L55 | |
082 | 0 | |a 530.4/29 |2 23 | |
084 | |a UQ 8700 |0 (DE-625)146602: |2 rvk | ||
100 | 1 | |a Tu, Zhanchun |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric methods in elastic theory of membranes in liquid crystal phases |c Zhanchun Tu (Beijing Normal University, China), Zhongcan Ou-Yang (Chinese Academy of Sciences, China), Jixing Liu (Chinese Academy of Sciences, China), Yuzhang Xie (Tsinghua University, China) |
250 | |a Second edition | ||
264 | 1 | |a Singapore |b World Scientific |c [2018] | |
300 | |a xiii, 274 pages | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Peking University-World Scientific advanced physics series |v vol. 2 | |
500 | |a Includes bibliographical references and index | ||
520 | |a "This is the second edition of the book Geometric Methods in Elastic Theory of Membranes in Liquid Crystal Phases published by World Scientific in 1999. This book gives a comprehensive treatment of the conditions of mechanical equilibrium and the deformation of membranes as a surface problem in differential geometry. It is aimed at readers engaging in the field of investigation of the shape formation of membranes in liquid crystalline state with differential geometry. The material chosen in this book is mainly limited to analytical results. The main changes in this second edition are: we add a chapter (Chapter 4) to explain how to calculate variational problems on a surface with a free edge by using a new mathematical tool ... moving frame method and exterior differential forms ... and how to derive the shape equation and boundary conditions for open lipid membranes through this new method. In addition, we include the recent concise work on chiral lipid membranes as a section in Chapter 5, and in Chapter 6 we mention some topics that we have not fully investigated but are also important to geometric theory of membrane elasticity"... | ||
650 | 4 | |a Liquid crystal films | |
650 | 4 | |a Polymer liquid crystals | |
650 | 4 | |a Liquid membranes | |
700 | 1 | |a Ou-Yang, Zhong-Can |e Verfasser |4 aut | |
700 | 1 | |a Liu, Ji-Xing |e Verfasser |4 aut | |
700 | 1 | |a Xie, Yuzhang |d 1915-2011 |e Verfasser |0 (DE-588)1056098384 |4 aut | |
830 | 0 | |a Peking University-World Scientific advanced physics series |v vol. 2 |w (DE-604)BV045240943 |9 2 | |
856 | 4 | 2 | |m LoC Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030323051&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030323051 |
Datensatz im Suchindex
_version_ | 1804178505219440640 |
---|---|
adam_text | GEOMETRIC METHODS IN ELASTIC THEORY OF MEMBRANES IN LIQUID CRYSTAL
PHASES
/ TU, ZHANCHUNYYEAUTHOR
: 2017
TABLE OF CONTENTS / INHALTSVERZEICHNIS
INTRODUCTION TO LIQUID CRYSTAL BIOMEMBRANES
CURVATURE ELASTICITY OF FLUID MEMBRANES
SHAPE EQUATION OF LIPID VESICLES AND ITS SOLUTIONS
GOVERNING EQUATIONS FOR OPEN LIPID MEMBRANES AND THEIR SOLUTIONS
THEORY OF TILTED CHIRAL LIPID BILAYERS
SOME UNTOUCHED TOPICS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Tu, Zhanchun Ou-Yang, Zhong-Can Liu, Ji-Xing Xie, Yuzhang 1915-2011 |
author_GND | (DE-588)1056098384 |
author_facet | Tu, Zhanchun Ou-Yang, Zhong-Can Liu, Ji-Xing Xie, Yuzhang 1915-2011 |
author_role | aut aut aut aut |
author_sort | Tu, Zhanchun |
author_variant | z t zt z c o y zcoy j x l jxl y x yx |
building | Verbundindex |
bvnumber | BV044929969 |
callnumber-first | Q - Science |
callnumber-label | QC173 |
callnumber-raw | QC173.4.L55 |
callnumber-search | QC173.4.L55 |
callnumber-sort | QC 3173.4 L55 |
callnumber-subject | QC - Physics |
classification_rvk | UQ 8700 |
ctrlnum | (OCoLC)1056142792 (DE-599)BVBBV044929969 |
dewey-full | 530.4/29 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/29 |
dewey-search | 530.4/29 |
dewey-sort | 3530.4 229 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03104nam a2200469 cb4500</leader><controlfield tag="001">BV044929969</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210413 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180504s2018 si |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">017032700</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813227729</subfield><subfield code="9">978-981-3227-72-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9813227729</subfield><subfield code="9">981-3227-72-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1056142792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044929969</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">si</subfield><subfield code="c">SG</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC173.4.L55</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4/29</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8700</subfield><subfield code="0">(DE-625)146602:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tu, Zhanchun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric methods in elastic theory of membranes in liquid crystal phases</subfield><subfield code="c">Zhanchun Tu (Beijing Normal University, China), Zhongcan Ou-Yang (Chinese Academy of Sciences, China), Jixing Liu (Chinese Academy of Sciences, China), Yuzhang Xie (Tsinghua University, China)</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 274 pages</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Peking University-World Scientific advanced physics series</subfield><subfield code="v">vol. 2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This is the second edition of the book Geometric Methods in Elastic Theory of Membranes in Liquid Crystal Phases published by World Scientific in 1999. This book gives a comprehensive treatment of the conditions of mechanical equilibrium and the deformation of membranes as a surface problem in differential geometry. It is aimed at readers engaging in the field of investigation of the shape formation of membranes in liquid crystalline state with differential geometry. The material chosen in this book is mainly limited to analytical results. The main changes in this second edition are: we add a chapter (Chapter 4) to explain how to calculate variational problems on a surface with a free edge by using a new mathematical tool ... moving frame method and exterior differential forms ... and how to derive the shape equation and boundary conditions for open lipid membranes through this new method. In addition, we include the recent concise work on chiral lipid membranes as a section in Chapter 5, and in Chapter 6 we mention some topics that we have not fully investigated but are also important to geometric theory of membrane elasticity"...</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid crystal films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymer liquid crystals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid membranes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ou-Yang, Zhong-Can</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Ji-Xing</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Yuzhang</subfield><subfield code="d">1915-2011</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1056098384</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Peking University-World Scientific advanced physics series</subfield><subfield code="v">vol. 2</subfield><subfield code="w">(DE-604)BV045240943</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">LoC Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030323051&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030323051</subfield></datafield></record></collection> |
id | DE-604.BV044929969 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:05:02Z |
institution | BVB |
isbn | 9789813227729 9813227729 |
language | English |
lccn | 017032700 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030323051 |
oclc_num | 1056142792 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-19 DE-BY-UBM |
physical | xiii, 274 pages |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | World Scientific |
record_format | marc |
series | Peking University-World Scientific advanced physics series |
series2 | Peking University-World Scientific advanced physics series |
spelling | Tu, Zhanchun Verfasser aut Geometric methods in elastic theory of membranes in liquid crystal phases Zhanchun Tu (Beijing Normal University, China), Zhongcan Ou-Yang (Chinese Academy of Sciences, China), Jixing Liu (Chinese Academy of Sciences, China), Yuzhang Xie (Tsinghua University, China) Second edition Singapore World Scientific [2018] xiii, 274 pages txt rdacontent n rdamedia nc rdacarrier Peking University-World Scientific advanced physics series vol. 2 Includes bibliographical references and index "This is the second edition of the book Geometric Methods in Elastic Theory of Membranes in Liquid Crystal Phases published by World Scientific in 1999. This book gives a comprehensive treatment of the conditions of mechanical equilibrium and the deformation of membranes as a surface problem in differential geometry. It is aimed at readers engaging in the field of investigation of the shape formation of membranes in liquid crystalline state with differential geometry. The material chosen in this book is mainly limited to analytical results. The main changes in this second edition are: we add a chapter (Chapter 4) to explain how to calculate variational problems on a surface with a free edge by using a new mathematical tool ... moving frame method and exterior differential forms ... and how to derive the shape equation and boundary conditions for open lipid membranes through this new method. In addition, we include the recent concise work on chiral lipid membranes as a section in Chapter 5, and in Chapter 6 we mention some topics that we have not fully investigated but are also important to geometric theory of membrane elasticity"... Liquid crystal films Polymer liquid crystals Liquid membranes Ou-Yang, Zhong-Can Verfasser aut Liu, Ji-Xing Verfasser aut Xie, Yuzhang 1915-2011 Verfasser (DE-588)1056098384 aut Peking University-World Scientific advanced physics series vol. 2 (DE-604)BV045240943 2 LoC Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030323051&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Tu, Zhanchun Ou-Yang, Zhong-Can Liu, Ji-Xing Xie, Yuzhang 1915-2011 Geometric methods in elastic theory of membranes in liquid crystal phases Peking University-World Scientific advanced physics series Liquid crystal films Polymer liquid crystals Liquid membranes |
title | Geometric methods in elastic theory of membranes in liquid crystal phases |
title_auth | Geometric methods in elastic theory of membranes in liquid crystal phases |
title_exact_search | Geometric methods in elastic theory of membranes in liquid crystal phases |
title_full | Geometric methods in elastic theory of membranes in liquid crystal phases Zhanchun Tu (Beijing Normal University, China), Zhongcan Ou-Yang (Chinese Academy of Sciences, China), Jixing Liu (Chinese Academy of Sciences, China), Yuzhang Xie (Tsinghua University, China) |
title_fullStr | Geometric methods in elastic theory of membranes in liquid crystal phases Zhanchun Tu (Beijing Normal University, China), Zhongcan Ou-Yang (Chinese Academy of Sciences, China), Jixing Liu (Chinese Academy of Sciences, China), Yuzhang Xie (Tsinghua University, China) |
title_full_unstemmed | Geometric methods in elastic theory of membranes in liquid crystal phases Zhanchun Tu (Beijing Normal University, China), Zhongcan Ou-Yang (Chinese Academy of Sciences, China), Jixing Liu (Chinese Academy of Sciences, China), Yuzhang Xie (Tsinghua University, China) |
title_short | Geometric methods in elastic theory of membranes in liquid crystal phases |
title_sort | geometric methods in elastic theory of membranes in liquid crystal phases |
topic | Liquid crystal films Polymer liquid crystals Liquid membranes |
topic_facet | Liquid crystal films Polymer liquid crystals Liquid membranes |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030323051&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV045240943 |
work_keys_str_mv | AT tuzhanchun geometricmethodsinelastictheoryofmembranesinliquidcrystalphases AT ouyangzhongcan geometricmethodsinelastictheoryofmembranesinliquidcrystalphases AT liujixing geometricmethodsinelastictheoryofmembranesinliquidcrystalphases AT xieyuzhang geometricmethodsinelastictheoryofmembranesinliquidcrystalphases |