Eigenvalues, multiplicities and graphs:
The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified de...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2018
|
Schriftenreihe: | Cambridge tracts in mathematics
211 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 TUM01 TUM02 UBA01 UBR01 Volltext |
Zusammenfassung: | The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject |
Beschreibung: | 1 Online-Ressource (xxii, 291 Seiten) |
ISBN: | 9781316155158 |
DOI: | 10.1017/9781316155158 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044925581 | ||
003 | DE-604 | ||
005 | 20210720 | ||
007 | cr|uuu---uuuuu | ||
008 | 180430s2018 |||| o||u| ||||||eng d | ||
020 | |a 9781316155158 |c OnlineAusgabe |9 978-1-316-15515-8 | ||
024 | 7 | |a 10.1017/9781316155158 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316155158 | ||
035 | |a (OCoLC)1029529691 | ||
035 | |a (DE-599)BVBBV044925581 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-384 |a DE-355 |a DE-91G | ||
082 | 0 | |a 512.9/434 | |
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a MAT 152 |2 stub | ||
100 | 1 | |a Johnson, Charles R. |d 1948- |e Verfasser |0 (DE-588)143876384 |4 aut | |
245 | 1 | 0 | |a Eigenvalues, multiplicities and graphs |c Charles R. Johnson, Carlos M. Saiago |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2018 | |
300 | |a 1 Online-Ressource (xxii, 291 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge tracts in mathematics |v 211 | |
520 | |a The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject | ||
650 | 4 | |a Eigenvalues | |
650 | 4 | |a Matrices | |
650 | 4 | |a Symmetric matrices | |
650 | 4 | |a Trees (Graph theory) | |
650 | 0 | 7 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenwert |0 (DE-588)4151200-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenwertverteilung |0 (DE-588)4123087-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |D s |
689 | 0 | 1 | |a Eigenwert |0 (DE-588)4151200-5 |D s |
689 | 0 | 2 | |a Eigenwertverteilung |0 (DE-588)4123087-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Saiago, Carlos M. |e Verfasser |0 (DE-588)1156043670 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, hardback |z 978-1-107-09545-8 |
830 | 0 | |a Cambridge tracts in mathematics |v 211 |w (DE-604)BV047362617 |9 211 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316155158 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030318758 | ||
966 | e | |u https://doi.org/10.1017/9781316155158 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316155158 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316155158 |l TUM01 |p ZDB-20-CBO |q TUM_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316155158 |l TUM02 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316155158 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316155158 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178497801814017 |
---|---|
any_adam_object | |
author | Johnson, Charles R. 1948- Saiago, Carlos M. |
author_GND | (DE-588)143876384 (DE-588)1156043670 |
author_facet | Johnson, Charles R. 1948- Saiago, Carlos M. |
author_role | aut aut |
author_sort | Johnson, Charles R. 1948- |
author_variant | c r j cr crj c m s cm cms |
building | Verbundindex |
bvnumber | BV044925581 |
classification_rvk | SK 890 |
classification_tum | MAT 152 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316155158 (OCoLC)1029529691 (DE-599)BVBBV044925581 |
dewey-full | 512.9/434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/434 |
dewey-search | 512.9/434 |
dewey-sort | 3512.9 3434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781316155158 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03416nmm a2200601zcb4500</leader><controlfield tag="001">BV044925581</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210720 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180430s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316155158</subfield><subfield code="c">OnlineAusgabe</subfield><subfield code="9">978-1-316-15515-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316155158</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316155158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1029529691</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044925581</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/434</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 152</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johnson, Charles R.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143876384</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Eigenvalues, multiplicities and graphs</subfield><subfield code="c">Charles R. Johnson, Carlos M. Saiago</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxii, 291 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">211</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvalues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trees (Graph theory)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwert</subfield><subfield code="0">(DE-588)4151200-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwertverteilung</subfield><subfield code="0">(DE-588)4123087-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Eigenwert</subfield><subfield code="0">(DE-588)4151200-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Eigenwertverteilung</subfield><subfield code="0">(DE-588)4123087-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saiago, Carlos M.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1156043670</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, hardback</subfield><subfield code="z">978-1-107-09545-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">211</subfield><subfield code="w">(DE-604)BV047362617</subfield><subfield code="9">211</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316155158</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030318758</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316155158</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316155158</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316155158</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316155158</subfield><subfield code="l">TUM02</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316155158</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316155158</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044925581 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:04:55Z |
institution | BVB |
isbn | 9781316155158 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030318758 |
oclc_num | 1029529691 |
open_access_boolean | |
owner | DE-12 DE-92 DE-384 DE-355 DE-BY-UBR DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-92 DE-384 DE-355 DE-BY-UBR DE-91G DE-BY-TUM |
physical | 1 Online-Ressource (xxii, 291 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Einzelkauf ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge tracts in mathematics |
series2 | Cambridge tracts in mathematics |
spelling | Johnson, Charles R. 1948- Verfasser (DE-588)143876384 aut Eigenvalues, multiplicities and graphs Charles R. Johnson, Carlos M. Saiago Cambridge Cambridge University Press 2018 1 Online-Ressource (xxii, 291 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 211 The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject Eigenvalues Matrices Symmetric matrices Trees (Graph theory) Matrix Mathematik (DE-588)4037968-1 gnd rswk-swf Eigenwert (DE-588)4151200-5 gnd rswk-swf Eigenwertverteilung (DE-588)4123087-5 gnd rswk-swf Matrix Mathematik (DE-588)4037968-1 s Eigenwert (DE-588)4151200-5 s Eigenwertverteilung (DE-588)4123087-5 s DE-604 Saiago, Carlos M. Verfasser (DE-588)1156043670 aut Erscheint auch als Druck-Ausgabe, hardback 978-1-107-09545-8 Cambridge tracts in mathematics 211 (DE-604)BV047362617 211 https://doi.org/10.1017/9781316155158 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Johnson, Charles R. 1948- Saiago, Carlos M. Eigenvalues, multiplicities and graphs Cambridge tracts in mathematics Eigenvalues Matrices Symmetric matrices Trees (Graph theory) Matrix Mathematik (DE-588)4037968-1 gnd Eigenwert (DE-588)4151200-5 gnd Eigenwertverteilung (DE-588)4123087-5 gnd |
subject_GND | (DE-588)4037968-1 (DE-588)4151200-5 (DE-588)4123087-5 |
title | Eigenvalues, multiplicities and graphs |
title_auth | Eigenvalues, multiplicities and graphs |
title_exact_search | Eigenvalues, multiplicities and graphs |
title_full | Eigenvalues, multiplicities and graphs Charles R. Johnson, Carlos M. Saiago |
title_fullStr | Eigenvalues, multiplicities and graphs Charles R. Johnson, Carlos M. Saiago |
title_full_unstemmed | Eigenvalues, multiplicities and graphs Charles R. Johnson, Carlos M. Saiago |
title_short | Eigenvalues, multiplicities and graphs |
title_sort | eigenvalues multiplicities and graphs |
topic | Eigenvalues Matrices Symmetric matrices Trees (Graph theory) Matrix Mathematik (DE-588)4037968-1 gnd Eigenwert (DE-588)4151200-5 gnd Eigenwertverteilung (DE-588)4123087-5 gnd |
topic_facet | Eigenvalues Matrices Symmetric matrices Trees (Graph theory) Matrix Mathematik Eigenwert Eigenwertverteilung |
url | https://doi.org/10.1017/9781316155158 |
volume_link | (DE-604)BV047362617 |
work_keys_str_mv | AT johnsoncharlesr eigenvaluesmultiplicitiesandgraphs AT saiagocarlosm eigenvaluesmultiplicitiesandgraphs |