New acoustics based on metamaterials:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Puchong, Selangor D.E.
Springer Singapore
2018
Springer 2018 |
Ausgabe: | 1st edition 2018 |
Schriftenreihe: | Engineering materials
|
Schlagworte: | |
Online-Zugang: | Inhaltstext http://www.springer.com/ Inhaltsverzeichnis |
Beschreibung: | xvi, 313 S. Ilustrationene, Diagramme 23.5 cm x 15.5 cm |
ISBN: | 9789811063756 9811063753 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044922730 | ||
003 | DE-604 | ||
005 | 20180430 | ||
007 | t | ||
008 | 180426s2018 si |||| |||| 00||| eng d | ||
016 | 7 | |a 1136877088 |2 DE-101 | |
020 | |a 9789811063756 |c Book : circa EUR 106.99 (DE) (freier Preis), circa EUR 109.99 (AT) (freier Preis), circa CHF 110.00 (freier Preis) |9 978-981-10-6375-6 | ||
020 | |a 9811063753 |9 981-10-6375-3 | ||
024 | 3 | |a 9789811063756 | |
028 | 5 | 2 | |a Bestellnummer: 978-981-10-6375-6 |
028 | 5 | 2 | |a Bestellnummer: 86843559 |
035 | |a (OCoLC)1033643628 | ||
035 | |a (DE-599)DNB1136877088 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a si |c XB-SG | ||
049 | |a DE-739 | ||
084 | |a UF 6000 |0 (DE-625)145598: |2 rvk | ||
084 | |a 620 |2 sdnb | ||
100 | 1 | |a Gan, Woon Siong |e Verfasser |0 (DE-588)1027199747 |4 aut | |
245 | 1 | 0 | |a New acoustics based on metamaterials |c Woon Siong Gan |
250 | |a 1st edition 2018 | ||
264 | 1 | |a Puchong, Selangor D.E. |b Springer Singapore |c 2018 | |
264 | 1 | |b Springer |c 2018 | |
300 | |a xvi, 313 S. |b Ilustrationene, Diagramme |c 23.5 cm x 15.5 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Engineering materials | |
650 | 0 | 7 | |a Metamaterial |0 (DE-588)7547278-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Akustik |0 (DE-588)4000988-9 |2 gnd |9 rswk-swf |
653 | |a TTA | ||
653 | |a TG | ||
653 | |a Gauge Invariance | ||
653 | |a Negative Refraction | ||
653 | |a Acoustical Cloaking | ||
653 | |a Seismic Metamaterials | ||
653 | |a Crystal Acoustics | ||
653 | |a Diffraction Tomography | ||
653 | |a Acoustic Waveguides | ||
653 | |a Acoustic Filters | ||
653 | |a Nonlinear Phononic Crystals | ||
653 | |a Artificial Piezoelectricity | ||
689 | 0 | 0 | |a Akustik |0 (DE-588)4000988-9 |D s |
689 | 0 | 1 | |a Metamaterial |0 (DE-588)7547278-8 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Springer Malaysia Representative Office |0 (DE-588)1065365012 |4 pbl | |
776 | 0 | 8 | |i Elektronische Reproduktion |z 9789811063763 |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2f05ebfc368a4424a6f7b9f25729db97&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m X:MVB |u http://www.springer.com/ |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030315978&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030315978 |
Datensatz im Suchindex
_version_ | 1804178492909158400 |
---|---|
adam_text | Contents
1 Symmetry Properties of Acoustic Fields.............................. 1
1.1 Introduction.................................................. 1
1.2 Sound Propagation in Solids................................... 2
1.2.1 Derivation of Linear Wave Equation of Motion and
Its Solutions........................................... 2
1.2.2 Symmetries in Linear Acoustic Wave Equations and
the New Stress Field Equation........................... 3
1.3 Use of Gauge Potential Theory to Solve Acoustic Wave
Equations........................................................ 4
1.4 Gauge Theory Formulation of Sound Propagation in Solids ... 6
1.4.1 Translational Symmetry.................................. 6
1.4.2 Introduction of Covariant Derivative to the
Infinitesimal Amplitude Sound Wave Equation............. 7
1.4.3 Introduction of Co variant Derivative to the Large
Amplitude Sound Wave Equation........................... 8
1.4.4 Local Rotational Symmetry............................... 8
1.5 Symmetry Is the Theoretical Framework of Acoustical
Metamaterial..................................................... 8
1.5.1 Rotational Symmetry and Theory of Elasticity............ 9
1.6 Local Gauge Invariance............................................ 9
1.7 Co variant Derivative............................................ 10
1.8 Discovery of Anisotropy as a Form of Local Symmetry........... 11
1.9 Role of Symmetry Properties of Acoustic Field in the Design
of a Phononic Structure......................................... 12
1.10 Phonon as a Goldstone Mode....................................... 13
1.11 Symmetry Property of Turbulence Field............................ 13
1.12 Time Reversal Symmetry in Acoustics.............................. 15
References............................................................. 15
IX
X
Contents
2 Negative Refraction and Acoustical Cloaking........................ 17
2.1 Introduction................................................... 17
2.2 Limitation of Veselago’s Theoiy................................ 18
2.2.1 Introduction........................................ 18
2.2.2 Gauge Invariance of Homogeneous Electromagnetic
Wave Equation....................................... 19
2.2.3 Gauge Invariance of Acoustic Field Equations ...... 20
2.2.4 Acoustical Cloaking.................................. 21
2.2.5 Gauge Invariance of Nonlinear Homogeneous
Acoustic Wave Equation............................... 22
2.2.6 My Important Discovery of Negative Refraction Is a
Special Case of Coordinate Transformations or a
Unified Theory for Negative Refraction and
Cloaking............................................. 22
2.2.7 Conclusions........................................ 23
2.3 Multiple Scattering Approach to Perfect Acoustic Lens. ........ 24
2.4 Acoustical Cloaking............................................ 29
2.4.1 Introduction........................................ 29
2.4.2 Derivation of Transformation Acoustics................ 30
2.4.3 Application to a Specific Example..................... 34
2.5 Acoustic Metamaterial with Simultaneous Negative Mass
Density and Negative Bulk Modulus............................. 35
2.6 Acoustical Cloaking based on Nonlinear Coordinate
Transformations............................................... 39
2.7 Acoustical Cloaking of Underwater Objects . . ................. 41
2.8 Extension of Double Negativity to Nonlinear Acoustics.......... 43
References.......................................................... 44
3 Basic Mechanisms of Sound Propagation in Solids for Negative
Materials............................................................ 47
3.1 Methods to Treat Multiple Scattering in Conventional Solids . . 47
3.2 T-Matrix of Multiple Scattering............................... 47
3.3 Application of T-Matrix to Multiple Scattering in Acoustical
Metamaterials................................................. 49
3.4 Low-Frequency Resonances Giving Rise to Locally Negative
Parameters............................................ 50
3.5 Acoustic Scatterers with Locally Negative Parameters. ....... 50
3.6 Multiple Scattering of Acoustic Waves in the Low-Frequency
Limit......................................................... 53
3.7 Multiple Scattering Effects: The A Factor...................... 53
3.8 Suitability of the T-Matrix Method to Multiple Scattering in
Acoustic Metamaterials....................................... 57
3.9 Diffraction................................................... 57
3.10 Diffraction by Negative Inclusion.............................. 58
Contents xi
3.11 Theory of Diffraction by Negative Inclusion..................... 59
3.11.1 Formulation of Forward Problem of Diffraction
Tomography............................................. 59
3.11.2 Modelling Diffraction Procedure in a Negative
Medium................................................ 64
3.11.3 Results of Numerical Simulation........................ 65
3.11.4 Points to Take Care of During Numerical
Simulation............................................. 72
3.12 Refraction...................................................... 73
References............................................................. 74
4 Artificial Elasticity.................................................. 77
4.1 Elastic Stiffness and Compliance................................ 77
4.2 Symmetry Properties of Stress Field and Particle Velocity
Field........................................................... 78
4.2.1 Symmetries between the Particle Velocity Field
Acoustic Equation of Motion and the Stress Field
Acoustic Equation of Motion...................................... 80
4.3 Rotation Invariance of the Stress Field and Particle Velocity
Field for an Isotropic Solid.................................... 81
4.4 Reflection Symmetry as a Special Case of Rotational
Symmetry. ...................................................... 81
4.5 Form Invariance of the Particle Velocity Field Acoustic
Equation of Motion.............................................. 82
4.6 Gauge Invariance of Nonlinear Homogeneous Acoustic Wave
Equation........................................................ 83
4.7 Acoustic Metamaterial with Simultaneous Negative Mass
Density and Negative Bulk Modulus-Demonstration of
Artificial Elasticity........................................... 84
4.8 The New Field of Artificial Elasticity.......................... 88
References........................................................... 88
5 Artificial Piezoelectricity.......................................... 89
5.1 What Is Piezoelectricity?....................................... 89
5.2 Piezoelectric Constitutive Relations............................ 91
5.3 Coupled Acoustic Field Equations and Maxwell’s Equations. . . 91
5.4 The Stiffened Christoffel Equation for Piezoelectricity......... 92
5.5 Application of Metamaterial to Acoustic Resonator............... 93
5.6 Application of Metamaterial to Acoustic Waveguide............... 96
5.7 Piezoelectricity as Second Order Phase Transition............... 98
5.8 Artificial Piezoelectricity.................................... 102
5.9 Fabrication of Artificial Piezoelectricity..................... 102
References............................................................ 104
Contents
6 Acoustic Diode..................................................... . 107
6.1 Nonlinear Acoustics based on the Metamaterial................ 107
6.1.1 Principles........................................... 107
6.1.2 Nonlinear Acoustic Metamaterials for Sound
Attenuation Applications............................. 109
6.2 Acoustic Diode Enabling One-Way Sound Transmission. ..... 110
6.3 Application of Acoustic Diode to Acoustical Imaging ............ 113
6.4 Theoretical Framework of the Acoustic Diode [9]................. 114
6.4.1 Introduction......................................... 114
6.4.2 Physics of Acoustic Diode.......................... .115
References.......................................................... . 122
7 Energy Harvesting and Phononics..................................... 125
7.1 Introduction—Technological Application of Phononic
Networks..................................................... 125
7.2 What Is Phononic Crystal?....................................... 126
7.3 Elastodynamics of Artificial Structure . . . ................... 128
7.3.1 Introductory Remarks................................. 128
7.3.2 Fundamental Equations and Governing Principles. ... 129
7.3.3 The Discrete to the Continuum: Taking Limits.......... 131
7.3.4 Evolution versus Conservation: The Microscopic
E.O.M. versus the Variational Principle............... 134
7.3.5 Broken Symmetry and Polarizations of the Vector
Phonon............................................... 137
7.3.6 Concluding Remarks on Elastodynamics from a
Symmetry Breaking Perspective........................ 140
7.4 Development of a Universal Design Framework: Mathematical
Structure..................................................... 141
7.4.1 Introductory Remarks.................................. 141
7.4.2 Generalization of Avoided Crossings and
Perturbation Theory................................. 143
7.4.3 Nonlocality: The Effect of the Lattice and its
Interactions......................................... 146
7.4.4 Nonlocality: The Effect of the Lattice and its
Interactions......................................... 148
7.4.5 Local Principles: The Variational Principle from a
Geometric Viewpoint................................... 150
7.4.6 Groups and Representations: Nonsymmorphicity
and Wyckoff Positioning.............................. 152
7.4.7 Classifications of Lattices: Physical Topology of
Phononic Structures.................................. 153
Contents
xiii
7.5 Designing Dispersion Relation for Phononic Metamaterials I:
Avoided Crossings............................................ 166
7.5.1 Introductory Remarks................................ 166
7.5.2 From Crystals to “Resonant” Metamaterials........... 167
7.5.3 Meso-scale Phononic Metacrystal: Polarization-
Specific Spectral Gaps.............................. 170
7.6 Designing Dispersion Relations Phononic Metamaterials II:
A Polychromatic Nonsymmorphic Phononic Crystal............... 171
7.6.1 Introduction........................................ 171
7.6.2 Global Symmetry: Nonsymmorphicity and Sticking
Bands............................................... 172
7.7 Thermoelectrics and Engineering Thermal Conductivity......... 180
7.8 Phononic Metamaterial Networks and Information Processing ... 182
7.9 Current and Future Work...................................... 183
References......................................................... 184
8 Local Resonant Structures........................................... 187
8.1 Introduction................................................. 187
8.2 Background of Phononic Crystals.............................. 188
8.3 Theory of Phononic Crystals—The Multiple Scattering Theory
(MST) . ..................................................... 189
8.3.1 Details of Calculation.............................. 192
8.3.2 Discussion of Results............................... 192
8.4 Multiple Scattering Approach to Perfect Acoustic Lens........ 194
8.5 Acoustic Metamaterials in a Broader Sense Beyond the
Phononic Crystals (Ma and Sheng [31])........................ 199
8.6 Demonstration of Local Resonance Using the Spring-Mass
Model and Dynamic Effective Mass [31]........................ 200
8.6.1 Effective Mass Dispersion between Two
Resonances.......................................... 201
8.6.2 Effective Bulk Modulus and Spatial Symmetry of the
Resonances [31]..................................... 202
8.6.3 Doubly Negative Mass Density and Bulk Modulus. . . 203
8.7 Membrane-Type Acoustic Metamaterials [31].................... 203
8.7.1 Normal Displacement Decomposition and
Relationship to Propagative and Evanescent Modes . . . 204
8.7.2 Effective Mass Density and Impedance of the
Membrane Resonator.................................. 205
8.7.3 Effective Bulk Modulus of Two Coupled Membrane
Resonators and Double Negativity.................... 206
XIV
Contents
8.8 Super-Resolution and Focusing Beyond the Diffraction Limit
[31].......................................................... 208
8.8.1 Resolution Limit and the Evanescent Waves............ 208
8.8.2 To Defeat the Diffraction Limit...................... 208
8.8.3 Acoustic Superlens................................... 210
8.8.4 Acoustic Hyperlens [31].............................. 211
8.9 Coordinate Transformations................................... 212
8.9.1 My Important Discovery of Negative Refraction is a
Special Case of Coordinate Transformations or a
Unified Theory for Negative Refraction and
Cloaking............................................. 212
8.9.2 Acoustical Cloaking................................. 214
8.9.3 Zero-Index Medium [31]............................... 221
8.10 Space-Coiling and Acoustic Metasurfaces [31]................. 221
8.10.1 Incurring Large Phase Delays Within a
Small Space......................................... 221
8.10.2 Phase Manipulation with Acoustic Metasurfaces
[31]................................................. 222
8.11 Absorption [31]............................................. 223
8.12 Sound Insulation Materials as Application of Complex Local
Resonant Structures.......................................... 225
8.12.1 Introduction....................................... 225
8.12.2 Sound Insulation..................................... 226
8.12.3 Application of Acoustic Metamaterials to Sound
Insulation [126].................................... 226
8.12.4 Modelling Methodology of the Localized
Resonances Structures (LRS)......................... 229
8.12.5 Experimental Methods of the Localized Resonances
Structures (LRS)..................................... 229
8.12.6 Plane Wave Testing................................... 229
8.12.7 Diffuse Field Testing................................ 230
8.12.8 Results.............................................. 231
8.12.9 Discussion......................................... 231
8.12.10 Conclusion........................................... 233
8.13 Emerging New Directions and Outlooks........................ 233
8.13.1 Elastic and Mechanical Metamaterials [31]............ 233
8.13.2 Acoustic Metamaterials as Rapidly Developing Field
with Tremendous Potential............................ 234
References.......................................................... 235
Contents
xv
9 Application of Acoustic Metamaterial to Time-Reversal
Acoustics......................................................... 243
9.1 Time-Reversal Symmetry Property of Acoustic Field-Basic
Principle of Time-Reversal Acoustics........................ 243
9.2 Experimental Implementation of Time-Reversal Acoustics..... 244
9.3 Ultrasonic Focusing in Inhomogeneous Media.................. 245
9.3.1 Adaptative Time-Delay Focusing Techniques.......... 245
9.3.2 The Time-Reversal Cavity........................... 247
9.3.3 Time-Reversal Mirror............................... 248
9.3.4 Focusing with a Time-Reversal Mirror............... 248
9.3.5 Signal Processing used in Time-Reversal Method.... 249
9.3.6 The Iterative Time-Reversal Mode—an Automatic
Target Selection................................... 249
9.4 Some Practical Applications of Time-Reversal Acoustics..... 250
9.5 Sub-wavelength Focusing Using Far Field Time-Reversal for
Electromagnetic Waves....................................... 252
9.6 Extension of Above Concept to Acoustics..................... 253
References...................................................... 256
10 Underwater Acoustical Cloaking..................................... 259
10.1 Acoustical Cloaking......................................... 259
10.2 Propagation Theory.......................................... 260
10.3 Reflection and Scattering from the Sea Surface.............. 261
10.4 Reflection and Scattering from the Sea Bottom............... 262
10.5 Sea Bottom—Reflection Loss................................. 262
10.6 Westervelt Equation......................................... 264
10.6.1 Coordinate Transformations on the Westervelt
Equation........................................... 265
10.7 A Practical Example of Underwater Acoustical Cloaking...... 269
10.7.1 Principle of Underwater Acoustic Cloaking.......... 269
10.7.2 Geometric Structure of the Underwater Acoustic
Cloak.............................................. 270
10.7.3 Experimental Procedure............................. 271
10.8 Application of Underwater Acoustical Cloaking............... 275
References........................................................ 275
11 Seismic Metamaterials.............................................. 277
11.1 Introduction................................................ 277
11.2 Electromagnetics Cloaking Principles for Seismic
Metamaterials.............................................. 278
11.3 Acoustical Cloaking Principles for Seismic Metamaterials... 278
11.4 Seismic Cloak Would Minimize Earthquake Damage.............. 279
11.4.1 Transformation Seismology.......................... 279
11.5 A Practical Example of a Seismic Cloak...................... 281
xvi Contents
11.6 Seismic Waveguide Made of Metamaterials........................ 282
11.6.1 Introductory Theory on Seismic Waves................. 282
11.6.2 Negative Modulus..................................... 283
11.6.3 Seismic Attenuator................................... 286
References........................................................... 287
12 Application of Acoustic Metamaterials to Finite Amplitude Sound
Wave................................................................. 289
12.1 Introduction................................................. 289
12.2 Acoustical Cloaking............................................ 290
12.3 Acoustic Radiation Force....................................... 291
12.4 Application of Acoustical Metamaterials to Force of Levitation
[41] in the Presence of General Relativity and Gravitational
Force......................................................... 294
12.4.1 Modelling of the Proposed Levitation System [41] . . . 295
12.4.2 Computation of the Acoustic Levitation Force.. 296
12.5 Conclusions.................................................... 298
References........................................................... 298
13 Acoustical Imaging on a Curvilinear Spacetime......................... 301
13.1 Introduction................................................... 301
13.2 The Usual Applications of the Theory of General Relativity . . . 302
13.3 Vibrography.................................................... 302
13.4 Elasticity Imaging............................................. 304
Reference............................................................ 305
14 Transport Theory is Key Foundation of Theoretical
Metamaterials Design—Metamaterial is Artificial Phase
Transition........................................................... 307
14.1 Transport Theory, Transport Properties and Discovery
of Metamaterial is in Fact Artificial Phase Transition........ 307
14.2 Discovery of Metamaterial is Artificial Phase Transition
and Singularity Behaviour of the Transport Properties
of Metamaterials at the Critical Point of Phase Transition... 308
14.3 Use of Transport Properties to Explore New Forms of
Metamaterials................................................. 310
14.3.1 Artificial Elasticity................................ 311
14.3.2 Artificial Magnetism................................. 311
14.3.3 Artificial High Temperature Superconductivity........ 311
14.3.4 Artificial Piezoelectricity.......................... 312
14.3.5 Artificial Ferromagnetism............................ 312
14.4 Metamaterial as Artificial Phase Transition as Breakthrough to
a New World of Artificial Materials........................... 312
14.5 Conclusions.................................................... 313
References........................................................... 313
|
any_adam_object | 1 |
author | Gan, Woon Siong |
author_GND | (DE-588)1027199747 |
author_facet | Gan, Woon Siong |
author_role | aut |
author_sort | Gan, Woon Siong |
author_variant | w s g ws wsg |
building | Verbundindex |
bvnumber | BV044922730 |
classification_rvk | UF 6000 |
ctrlnum | (OCoLC)1033643628 (DE-599)DNB1136877088 |
discipline | Maschinenbau / Maschinenwesen Physik |
edition | 1st edition 2018 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02564nam a2200649 c 4500</leader><controlfield tag="001">BV044922730</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180430 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180426s2018 si |||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1136877088</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811063756</subfield><subfield code="c">Book : circa EUR 106.99 (DE) (freier Preis), circa EUR 109.99 (AT) (freier Preis), circa CHF 110.00 (freier Preis)</subfield><subfield code="9">978-981-10-6375-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9811063753</subfield><subfield code="9">981-10-6375-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9789811063756</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 978-981-10-6375-6</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 86843559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1033643628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1136877088</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">si</subfield><subfield code="c">XB-SG</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 6000</subfield><subfield code="0">(DE-625)145598:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gan, Woon Siong</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1027199747</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New acoustics based on metamaterials</subfield><subfield code="c">Woon Siong Gan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition 2018</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Puchong, Selangor D.E.</subfield><subfield code="b">Springer Singapore</subfield><subfield code="c">2018</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Springer</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 313 S.</subfield><subfield code="b">Ilustrationene, Diagramme</subfield><subfield code="c">23.5 cm x 15.5 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Engineering materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metamaterial</subfield><subfield code="0">(DE-588)7547278-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Akustik</subfield><subfield code="0">(DE-588)4000988-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TTA</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TG</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gauge Invariance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Negative Refraction</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Acoustical Cloaking</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Seismic Metamaterials</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Crystal Acoustics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Diffraction Tomography</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Acoustic Waveguides</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Acoustic Filters</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nonlinear Phononic Crystals</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Artificial Piezoelectricity</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Akustik</subfield><subfield code="0">(DE-588)4000988-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Metamaterial</subfield><subfield code="0">(DE-588)7547278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Springer Malaysia Representative Office</subfield><subfield code="0">(DE-588)1065365012</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Elektronische Reproduktion</subfield><subfield code="z">9789811063763</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2f05ebfc368a4424a6f7b9f25729db97&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.springer.com/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030315978&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030315978</subfield></datafield></record></collection> |
id | DE-604.BV044922730 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:04:50Z |
institution | BVB |
institution_GND | (DE-588)1065365012 |
isbn | 9789811063756 9811063753 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030315978 |
oclc_num | 1033643628 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | xvi, 313 S. Ilustrationene, Diagramme 23.5 cm x 15.5 cm |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer Singapore Springer |
record_format | marc |
series2 | Engineering materials |
spelling | Gan, Woon Siong Verfasser (DE-588)1027199747 aut New acoustics based on metamaterials Woon Siong Gan 1st edition 2018 Puchong, Selangor D.E. Springer Singapore 2018 Springer 2018 xvi, 313 S. Ilustrationene, Diagramme 23.5 cm x 15.5 cm txt rdacontent n rdamedia nc rdacarrier Engineering materials Metamaterial (DE-588)7547278-8 gnd rswk-swf Akustik (DE-588)4000988-9 gnd rswk-swf TTA TG Gauge Invariance Negative Refraction Acoustical Cloaking Seismic Metamaterials Crystal Acoustics Diffraction Tomography Acoustic Waveguides Acoustic Filters Nonlinear Phononic Crystals Artificial Piezoelectricity Akustik (DE-588)4000988-9 s Metamaterial (DE-588)7547278-8 s DE-604 Springer Malaysia Representative Office (DE-588)1065365012 pbl Elektronische Reproduktion 9789811063763 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2f05ebfc368a4424a6f7b9f25729db97&prov=M&dok_var=1&dok_ext=htm Inhaltstext X:MVB http://www.springer.com/ Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030315978&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gan, Woon Siong New acoustics based on metamaterials Metamaterial (DE-588)7547278-8 gnd Akustik (DE-588)4000988-9 gnd |
subject_GND | (DE-588)7547278-8 (DE-588)4000988-9 |
title | New acoustics based on metamaterials |
title_auth | New acoustics based on metamaterials |
title_exact_search | New acoustics based on metamaterials |
title_full | New acoustics based on metamaterials Woon Siong Gan |
title_fullStr | New acoustics based on metamaterials Woon Siong Gan |
title_full_unstemmed | New acoustics based on metamaterials Woon Siong Gan |
title_short | New acoustics based on metamaterials |
title_sort | new acoustics based on metamaterials |
topic | Metamaterial (DE-588)7547278-8 gnd Akustik (DE-588)4000988-9 gnd |
topic_facet | Metamaterial Akustik |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2f05ebfc368a4424a6f7b9f25729db97&prov=M&dok_var=1&dok_ext=htm http://www.springer.com/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030315978&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ganwoonsiong newacousticsbasedonmetamaterials AT springermalaysiarepresentativeoffice newacousticsbasedonmetamaterials |