Computational methods for data analysis:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
[2019]
|
Schriftenreihe: | De Gruyter STEM
|
Schlagworte: | |
Online-Zugang: | http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110496352&searchTitles=true https://www.degruyter.com/doc/cover/9783110496352.jpg Inhaltsverzeichnis |
Beschreibung: | XII, 383 Seiten Illustrationen, Diagramme |
ISBN: | 9783110496352 3110496356 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044918565 | ||
003 | DE-604 | ||
005 | 20200129 | ||
007 | t | ||
008 | 180424s2019 gw a||| |||| 00||| eng d | ||
015 | |a 18,N08 |2 dnb | ||
016 | 7 | |a 1152828576 |2 DE-101 | |
020 | |a 9783110496352 |c : EUR 69.95 (DE) (freier Preis), EUR 69.95 (DE) (freier Preis), EUR 69.95 (AT) (freier Preis), EUR 69.95 (AT) (freier Preis) |9 978-3-11-049635-2 | ||
020 | |a 3110496356 |9 3-11-049635-6 | ||
024 | 3 | |a 9783110496352 | |
035 | |a (OCoLC)1083271652 | ||
035 | |a (DE-599)DNB1152828576 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 |a DE-355 |a DE-384 |a DE-739 |a DE-522 |a DE-19 |a DE-578 |a DE-703 |a DE-634 |a DE-83 |a DE-11 | ||
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a QH 234 |0 (DE-625)141549: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
084 | |a SK 900 |0 (DE-625)143268: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a W 26.55 |2 nlm | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Karaca, Yeliz |e Verfasser |0 (DE-588)1174000813 |4 aut | |
245 | 1 | 0 | |a Computational methods for data analysis |c Yeliz Karaca, Carlo Cattani |
264 | 1 | |a Berlin |b De Gruyter |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a XII, 383 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a De Gruyter STEM | |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
653 | |a Fachhochschul-/Hochschulausbildung | ||
653 | |a Fachhochschul-/Hochschulausbildung | ||
653 | |a Bioinformatik | ||
653 | |a Datenanalyse | ||
653 | |a Maschinelles Lernen | ||
653 | |a Massendaten | ||
653 | |a Ökonometrie | ||
689 | 0 | 0 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Cattani, Carlo |d 1954- |e Verfasser |0 (DE-588)1076126375 |4 aut | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-049636-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-049360-3 |
856 | 4 | 2 | |m X:MVB |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110496352&searchTitles=true |
856 | 4 | 2 | |m X:MVB |u https://www.degruyter.com/doc/cover/9783110496352.jpg |
856 | 4 | 2 | |m Digitalisierung UB Augsburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030311916&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030311916 |
Datensatz im Suchindex
_version_ | 1804178486028402688 |
---|---|
adam_text | Contents
Preface--V
Acknowledgment--VII
1
1.1
1.2
1.3
1.4
1.5
1.5.1
2
2.1
2.2
2.2.1
2.3
2.3.1
2.3.2
2.4
2.4.1
2.4.2
2.4.3
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.6
3
3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
Introduction----1
Objectives-----3
Intended audience-----3
Features of the chapters----4
Content of the chapters-----5
Text supplements------7
Datasets----7
Dataset----9
Big data and data science-----12
Data objects, attributes and types of attributes--15
Nominal attributes and numeric attributes-----18
Basic definitions of real and synthetic data--19
Real dataset----20
Synthetic dataset-----20
Real and synthetic data from the fields of economy and
medicine----26
Economy data: Economy (U.N.I.S.) dataset------26
MS data and content (neurology and radiology data): MS
dataset-----26
Clinical psychology data: WAIS-R dataset------39
Basic statistical descriptions of data--54
Central tendency: Mean, median and mode-------55
Spread of data-----57
Measures of data dispersion------60
Graphic displays------61
Data matrix versus dissimilarity matrix---65
References-----67
Data preprocessing and model evaluation-----71
Data quality----71
Data preprocessing: Major steps involved------72
Data cleaning and methods-----73
Data cleaning as a process----74
Data integration and methods-----75
Data value conflict detection and resolution--81
X
Contents
3.4
3.5
3.6
3.7
3.8
3.8.1
3.9
3.9.1
4
4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
4.2.2
4.3
4.3.1
4.3.2
5
5.1
5.1.1
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.2.3
6
6.1
6.2
Data smoothing and methods-------81
Data reduction----83
Data transformation------84
Attribute subset selection----84
Classification of data---88
Definition of classification--89
Model evaluation and selection-----91
Metrics for evaluating classifier performance---92
References-----101
Algorithms------103
What is an algorithm?----104
What is the flowchart of an algorithm?----104
Fundamental concepts of programming-------105
Expressions and repetition statements-----108
Image on coordinate systems------112
Pixel coordinates----112
Color models------113
Statistical application with algorithms: Image on coordinate
systems-----114
Statistical application with algorithms: BW image on coordinate
systems-----116
Statistical application with algorithms: RGB image on coordinate
systems-----130
References-----144
Linear model and multilinear model-----147
Linear model analysis for various data----156
Application of economy dataset based on linear model-----156
Linear model for the analysis of MS----159
Linear model for the analysis of mental functions---162
Multilinear model algorithms for the analysis of various data---165
Multilinear model for the analysis of economy (U.N.I.S.)
dataset-----165
Multilinear model for the analysis of MS--166
Multilinear model for the analysis of mental functions---169
References-----171
Decision Tree---173
Decision tree induction----174
Attribute selection measures-----178
Contents
XI
6.3
6.3.1
6.4
6.4.1
6.5
6.5.1
7
7.1
7.1.1
7.1.2
7.1.3
8
8.1
8.2
8.3
8.3.1
8.3.2
8.3.3
9
9.1
9.1.1
9.1.2
9.1.3
10
10.1
10.1.1
10.2
10.2.1
10.3
10.3.1
Iterative dichotomiser 3 (ID3) algorithm--178
ID3 algorithm for the analysis of various data---185
C4.5 algorithm----195
C4.5 Algorithm for the analysis of various data--199
CART algorithm----208
CART algorithm for the analysis of various data--217
References----226
Naive Bayesian classifier----229
Naive Bayesian classifier algorithm (and its types) for the analysis
of various data---237
Naive Bayesian classifier algorithm for the analysis of economy
(U.N.I.S.)---237
Algorithms for the analysis of multiple sclerosis--241
Naive Bayesian classifier algorithm for the analysis of mental
functions----246
References----250
Support vector machines algorithms------251
The case with data being linearly separable---251
The case when the data are linearly inseparable----257
SVM algorithm for the analysis of various data---260
SVM algorithm for the analysis of economy (U.N.I.S.) Data---260
SVM algorithm for the analysis of multiple sclerosis--263
SVM algorithm for the analysis of mental functions----267
References----270
/(-Nearest neighbor algorithm----273
/(-Nearest algorithm for the analysis of various data-277
/(-Nearest algorithm for the analysis of Economy (U.N.I.S.)-277
/(-Nearest algorithm for the analysis of multiple sclerosis-280
/(-Nearest algorithm for the analysis of mental functions---284
References----287
Artificial neural networks algorithm----289
Classification by backpropagation----289
A multilayer feed-forward neural network----290
Feed-forward backpropagation (FFBP) algorithm------291
FFBP algorithm for the analysis of various data--297
LVQ algorithm-----311
LVQ algorithm for the analysis of various data---313
References----321
XII
Contents
11 Fractal and multifractal methods with ANN----------323
11.1 Basic descriptions of fractal----323
11.2 Fractal dimension----334
11.3 Multifractal methods-----335
11.3.1 Two-dimensional fractional Brownian motion------335
11.3.2 Holder regularity----337
11.3.3 Fractional Brownian motion-------338
11.4 Multifractal analysis with LVQ algorithm----352
11.4.1 Polynomial Holder function with LVQ algorithm for the analysis of
various data----355
11.4.2 Exponential Holder function with LVQ algorithm for the analysis of
various data----363
References------370
Index
375
|
any_adam_object | 1 |
author | Karaca, Yeliz Cattani, Carlo 1954- |
author_GND | (DE-588)1174000813 (DE-588)1076126375 |
author_facet | Karaca, Yeliz Cattani, Carlo 1954- |
author_role | aut aut |
author_sort | Karaca, Yeliz |
author_variant | y k yk c c cc |
building | Verbundindex |
bvnumber | BV044918565 |
classification_rvk | QH 233 QH 234 SK 830 SK 840 SK 900 ST 530 |
ctrlnum | (OCoLC)1083271652 (DE-599)DNB1152828576 |
discipline | Informatik Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02919nam a2200685 c 4500</leader><controlfield tag="001">BV044918565</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200129 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180424s2019 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">18,N08</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1152828576</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110496352</subfield><subfield code="c">: EUR 69.95 (DE) (freier Preis), EUR 69.95 (DE) (freier Preis), EUR 69.95 (AT) (freier Preis), EUR 69.95 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-049635-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110496356</subfield><subfield code="9">3-11-049635-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110496352</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1083271652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1152828576</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-522</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-578</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 234</subfield><subfield code="0">(DE-625)141549:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 900</subfield><subfield code="0">(DE-625)143268:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">W 26.55</subfield><subfield code="2">nlm</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karaca, Yeliz</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1174000813</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational methods for data analysis</subfield><subfield code="c">Yeliz Karaca, Carlo Cattani</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 383 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter STEM</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fachhochschul-/Hochschulausbildung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fachhochschul-/Hochschulausbildung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bioinformatik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Datenanalyse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Maschinelles Lernen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Massendaten</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ökonometrie</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cattani, Carlo</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1076126375</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-049636-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-049360-3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110496352&searchTitles=true</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">https://www.degruyter.com/doc/cover/9783110496352.jpg</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030311916&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030311916</subfield></datafield></record></collection> |
id | DE-604.BV044918565 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:04:44Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110496352 3110496356 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030311916 |
oclc_num | 1083271652 |
open_access_boolean | |
owner | DE-20 DE-355 DE-BY-UBR DE-384 DE-739 DE-522 DE-19 DE-BY-UBM DE-578 DE-703 DE-634 DE-83 DE-11 |
owner_facet | DE-20 DE-355 DE-BY-UBR DE-384 DE-739 DE-522 DE-19 DE-BY-UBM DE-578 DE-703 DE-634 DE-83 DE-11 |
physical | XII, 383 Seiten Illustrationen, Diagramme |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter STEM |
spelling | Karaca, Yeliz Verfasser (DE-588)1174000813 aut Computational methods for data analysis Yeliz Karaca, Carlo Cattani Berlin De Gruyter [2019] © 2019 XII, 383 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier De Gruyter STEM Datenanalyse (DE-588)4123037-1 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Fachhochschul-/Hochschulausbildung Bioinformatik Datenanalyse Maschinelles Lernen Massendaten Ökonometrie Datenanalyse (DE-588)4123037-1 s Numerisches Verfahren (DE-588)4128130-5 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Cattani, Carlo 1954- Verfasser (DE-588)1076126375 aut Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-11-049636-9 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-049360-3 X:MVB http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110496352&searchTitles=true X:MVB https://www.degruyter.com/doc/cover/9783110496352.jpg Digitalisierung UB Augsburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030311916&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Karaca, Yeliz Cattani, Carlo 1954- Computational methods for data analysis Datenanalyse (DE-588)4123037-1 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4123037-1 (DE-588)4128130-5 (DE-588)4193754-5 |
title | Computational methods for data analysis |
title_auth | Computational methods for data analysis |
title_exact_search | Computational methods for data analysis |
title_full | Computational methods for data analysis Yeliz Karaca, Carlo Cattani |
title_fullStr | Computational methods for data analysis Yeliz Karaca, Carlo Cattani |
title_full_unstemmed | Computational methods for data analysis Yeliz Karaca, Carlo Cattani |
title_short | Computational methods for data analysis |
title_sort | computational methods for data analysis |
topic | Datenanalyse (DE-588)4123037-1 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Datenanalyse Numerisches Verfahren Maschinelles Lernen |
url | http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110496352&searchTitles=true https://www.degruyter.com/doc/cover/9783110496352.jpg http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030311916&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT karacayeliz computationalmethodsfordataanalysis AT cattanicarlo computationalmethodsfordataanalysis AT walterdegruytergmbhcokg computationalmethodsfordataanalysis |