Artificial intelligence: with an introduction to machine learning
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton
CRC Press
[2018]
|
Ausgabe: | Second edition |
Schriftenreihe: | Chapman & Hall/CRC artificial intelligence and robotics series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | Includes bibliographical references |
Beschreibung: | xiii, 466 Seiten Illustrationen, Diagramme |
ISBN: | 9781138502383 9780367571641 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044905185 | ||
003 | DE-604 | ||
005 | 20200831 | ||
007 | t | ||
008 | 180416s2018 xxua||| |||| 00||| eng d | ||
010 | |a 017050133 | ||
020 | |a 9781138502383 |c hardback |9 978-1-138-50238-3 | ||
020 | |a 9780367571641 |9 978-0-367-57164-1 | ||
035 | |a (OCoLC)1043712926 | ||
035 | |a (DE-599)BVBBV044905185 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 |a DE-862 |a DE-739 |a DE-1049 |a DE-83 |a DE-703 |a DE-573 |a DE-898 |a DE-1050 | ||
050 | 0 | |a Q335 | |
082 | 0 | |a 006.3 |2 23 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Neapolitan, Richard E. |e Verfasser |0 (DE-588)141964383 |4 aut | |
240 | 1 | 0 | |a Contemporary artificial intelligence |
245 | 1 | 0 | |a Artificial intelligence |b with an introduction to machine learning |c Richard E. Neapolitan, Xia Jiang |
250 | |a Second edition | ||
264 | 1 | |a Boca Raton |b CRC Press |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a xiii, 466 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Chapman & Hall/CRC artificial intelligence and robotics series | |
500 | |a Includes bibliographical references | ||
650 | 4 | |a Artificial intelligence | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Jiang, Xia |d 1967- |e Verfasser |0 (DE-588)1161203680 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030298881&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030298881&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-030298881 |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/ST 300 N353(2) |
DE-BY-FWS_katkey | 696272 |
DE-BY-FWS_media_number | 083000520303 |
_version_ | 1806173804321308672 |
adam_text | Contents
Preface xi
About the Authors xiii
1 Introduction to Artificial Intelligence 1
1.1 History of Artificial Intelligence . . ................................. 2
1.1.1 What Is Artificial Intelligence?.................................. 2
1.1.2 Emergence of AI................................................... 4
1.1.3 Cognitive Science and AI.......................................... 4
1.1.4 Logical Approach to AI............................................ 4
1.1.5 Knowledge-Based Systems........................................... 5
1.1.6 Probabilistic Approach to AI...................................... 6
1.1.7 Evolutionary Computation and Swarm Intelligence................... 6
1.1.8 Neural Networks ; Deep Learning.................................. 7
1.1.9 A Return to Creating HAL.......................................... 7
1.2 Outline of This Book.................................................... 7
1 Logical Intelligence 9
2 Propositional Logic 11
2.1 Basics of Propositional Logic......................................... 12
2.1.1 Syntax........................................................... 12
2.1.2 Semantics........................................................ 13
2.1.3 Tautologies and Logical Implication.............................. 17
2.1.4 Logical Arguments................................................ 18
2.1.5 Derivation Systems................................................21
2.2 Resolution...............................................................24
2.2.1 Normal Forms .................................................... 25
2.2.2 Derivations Using Resolution......................................26
2.2.3 Resolution Algorithm..............................................30
2.3 Artificial Intelligence Applications ....................................30
2.3.1 Knowledge-Based Systems...........................................30
2.3.2 Wumpus World......................................................41
2.4 Discussion and Further Reading...........................................48
3 First-Order Logic 53
3.1 Basics of First-Order Logic .............................................53
3.1.1 Syntax........................................................... 54
3.1.2 Semantics.........................................................56
v
VI
CONTENTS
3.1.3 Validity and Logical Implication....................................60
3.1.4 Derivation Systems..................................................62
3.1.5 Modus Ponens for First-Order Logic..................................65
3.2 Artificial Intelligence Applications .....................................68
3.2.1 Wumpus World Revisited..............................................69
3.2.2 Planning .......................................................... 69
3.3 Discussion and Further Reading............................................73
4 Certain Knowledge Representation 77
4.1 Taxonomic Knowledge.......................................................78
4.1.1 Semantic Nets .................................................... 78
4.1.2 Model of Human Organization of Knowledge............................79
4.2 Frames....................................................................80
4.2.1 Frame Data Structure............................................... 80
4.2.2 Planning a Trip Using Frames........................................81
4.3 Nonmonotonic Logic........................................................84
4.3.1 Circumscription ................................................... 84
4.3.2 Default Logic.......................................................85
4.3.3 Difficulties....................................................... 86
4.4 Discussion and Further Reading............................................86
5 Learning Deterministic Models 89
5.1 Supervised Learning.......................................................89
5.2 Regression................................................................90
5.2.1 Simple Linear Regression............................................91
5.2.2 Multiple Linear Regression..........................................93
5.2.3 Overfitting and Cross Validation....................................94
5.3 Parameter Estimation..................................................... 96
5.3.1 Estimating the Parameters for Simple Linear Regression..............96
5.3.2 Gradient Descent....................................................98
5.3.3 Logistic Regression and Gradient Descent...........................100
5.3.4 Stochastic Gradient Descent........................................101
5.4 Learning a Decision Tree.................................................102
5.4.1 Information Theory ................................................102
5.4.2 Information Gain and the ID3 Algorithm.............................106
5.4.3 Overfitting........................................................108
II Probabilistic Intelligence 113
6 Probability 115
6.1 Probability Basics.......................................................117
6.1.1 Probability Spaces.................................................117
6.1.2 Conditional Probability and Independence...........................120
6.1.3 Bayes’ Theorem ....................................................122
6.2 Random Variables.........................................................123
6.2.1 Probability Distributions of Random Variables......................123
6.2.2 Independence of Random Variables...................................128
6.3 Meaning of Probability...................................................131
6.3.1 Relative Frequency Approach to Probability.........................132
6.3.2 Subjective Approach to Probability.................................134
CONTENTS vii
6.4 Random Variables in Applications..........................................135
6.5 Probability in the Wumpus World ..........................................139
7 Uncertain Knowledge Representation 145
7.1 Intuitive Introduction to Bayesian Networks...............................147
7.2 Properties of Bayesian Networks...........................................149
7.2.1 Definition of a Bayesian Network...................................149
7.2.2 Representation of a Bayesian Network...............................152
7.3 Causal Networks as Bayesian Networks......................................154
7.3.1 Causality..........................................................154
7.3.2 Causality and the Markov Condition.................................155
7.3.3 Markov Condition without Causality.................................159
7.4 Inference in Bayesian Networks............................................160
7.4.1 Examples of Inference..............................................160
7.4.2 Inference Algorithms and Packages..................................162
7.4.3 Inference Using Netica.............................................163
7.5 Networks with Continuous Variables........................................165
7.5.1 Gaussian Bayesian Networks........................................ 165
7.5.2 Hybrid Networks....................................................168
7.6 Obtaining the Probabilities...............................................170
7.6.1 Difficulty Inherent in Multiple Parents............................170
7.6.2 Basic Noisy OR-Gate Model .....................................170
7.6.3 Leaky Noisy OR-Gate Model..........................................172
7.6.4 Further Models.....................................................174
7.7 Large-Scale Application: Promedas.........................................174
8 Advanced Properties of Bayesian Networks 181
8.1 Entailed Conditional Independencies . ....................................182
8.1.1 Examples of Entailed Conditional Independencies....................182
8.1.2 d-Separation..................................................... 185
8.2 Faithfulness..............................................................188
8.2.1 Unfaithful Probability Distributions...............................188
8.2.2 Faithfulness Condition............................. . . ..........190
8.3 Markov Equivalence........................................................191
8.4 Markov Blankets and Boundaries............................................192
9 Decision Analysis 201
9.1 Decision Trees............................................................202
9.1.1 Simple Examples....................................................202
9.1.2 Solving More Complex Decision Trees................................205
9.2 Influence Diagrams....................................................... 216
9.2.1 Representing Decision Problems with Influence Diagrams.............216
9.2.2 Solving Influence Diagrams.........................................222
9.2.3 Techniques for Solving Influence Diagrams..........................222
9.2.4 Solving Influence Diagrams Using Netica ...........................226
9.3 Modeling Risk Preferences.................................................231
9.3.1 Exponential Utility Function.......................................231
9.3.2 Assessing r........................................................232
9.4 Analyzing Risk Directly...................................................233
9.4.1 Using the Variance to Measure Risk.................................233
9.4.2 Risk Profiles .....................................................235
viii CONTENTS
9.4*3 Dominance.........................................................236
9.5 Good Decision versus Good Outcome.......................................239
9.6 Sensitivity Analysis....................................................239
9.7 Value of Information...................................................241
9.7.1 Expected Value of Perfect Information.............................242
9.7.2 Expected Value of Imperfect Information...........................244
9.8 Discussion and Further Reading..........................................245
9.8.1 Academics.........................................................246
9.8.2 Business and Finance..............................................247
9.8.3 Capital Equipment.................................................247
9.8.4 Computer Games .................................................. 247
9.8.5 Computer Vision...................................................247
9.8.6 Computer Software.................................................247
9.8.7 Medicine ........................................................ 248
9.8.8 Natural Language Processing.......................................248
9.8.9 Planning .........................................................248
9.8.10 Psychology.......................................................248
9.8.11 Reliability Analysis.............................................248
9.8.12 Scheduling ......................................................249
9.8.13 Speech Recognition...............................................249
9.8.14 Vehicle Control and Malfunction Diagnosis........................249
10 Learning Probabilistic Model Parameters 257
10.1 Learning a Single Parameter........................................... 257
10.1.1 Binomial Random Variables........................................258
10.1.2 Multinomial Random Variables.....................................260
10.2 Learning Parameters in a Bayesian Network . . ..........................261
10.2.1 Procedure for Learning Parameters . . ...........................262
10.2.2 Equivalent Sample Size . ........................................263
10.3 Learning Parameters with Missing Data*..................................266
11 Learning Probabilistic Model Structure 275
11.1 Structure Learning Problem..............................................276
11.2 Score-Based Structure Learning..........................................276
11.2.1 Bayesian Score...................................................276
11.2.2 BIC Score........................................................283
11.2.3 Consistent Scoring Criteria......................................284
11.2.4 How Many DAGs Must We Score?.....................................285
11.2.5 Using the Learned Network to Do Inference........................285
11.2.6 Learning Structure with Missing Data*............................286
11.2.7 Approximate Structure Learning...................................293
11.2.8 Model Averaging................................................ 297
11.2.9 Approximate Model Averaging*.....................................300
11.3 Constraint-Based Structure Learning.................................... 303
11.3.1 Learning a DAG Faithful to P.....................................303
11.3.2 Learning a DAG in which P Is Embedded Faithfully................307
11.4 Application: MENTOR.....................................................308
11.4.1 Developing the Network...........................................308
11.4.2 Validating MENTOR............................................... 310
11.5 Software Packages for Learning..........................................311
11.6 Causal Learning ........................................................312
CONTENTS
IX
11.6.1 Causal Faithfulness Assumption ...................................312
11.6.2 Causal Embedded Faithfulness Assumption...........................314
11.6.3 Application: College Student Retention Rate.......................317
11.7 Class Probability Trees.................................................320
11.7.1 Theory of Class Probability Trees ................................320
11.7.2 Application to Targeted Advertising...............................322
11.8 Discussion and Further Reading..........................................325
11.8.1 Biology...........................................................325
11.8.2 Business and Finance..............................................326
11.8.3 Causal Learning...................................................326
11.8.4 Data Mining.......................................................326
11.8.5 Medicine .........................................................326
11.8.6 Weather Forecasting...............................................326
12 Unsupervised Learning and Reinforcement Learning 331
12.1 Unsupervised Learning................................................. 331
12.1.1 Clustering........................................................331
12.1.2 Automated Discovery ............................................ 333
12.2 Reinforcement Learning..................................................333
12.2.1 Multi-Armed Bandit Algorithms.....................................333
12.2.2 Dynamic Networks*.................................................336
12.3 Discussion and Further Reading..........................................345
III Emergent Intelligence 349
13 Evolutionary Computation 351
13.1 Genetics Review........................................................ 352
13.2 Genetic Algorithms................................................... 354
13.2.1 Algorithm.........................................................354
13.2.2 Illustrative Example..............................................355
13.2.3 Traveling Salesperson Problem.....................................357
13.3 Genetic Programming.....................................................364
13.3.1 Illustrative Example............................................. 365
13.3.2 Artificial Ant....................................................367
13.3.3 Application to Financial Trading..................................370
13.4 Discussion and Further Reading..........................................373
14 Swarm Intelligence 377
14.1 Ant System..............................................................377
14.1.1 Real Ant Colonies.................................................378
14.1.2 Artificial Ants for Solving the TSP...............................378
14.2 Flocks....................................................... .........381
14.3 Discussion and Further Reading..........................................383
IV Neural Intelligence 387
15 Neural Networks and Deep Learning 389
15.1 The Perceptron..........................................................389
15.1.1 Learning the Weights for a Perceptron.............................391
15.1.2 The Perceptron and Logistic Regression............................394
X
CONTENTS
15.2 Feedforward Neural Networks...........................................395
15.2.1 Modeling XOR................................................... 395
15.2.2 Example with Two Hidden Layers..................................398
15.2.3 Structure of a Feedforward Neural Network.......................401
15.3 Activation Functions..................................................403
15.3.1 Output Nodes .......................................... 403
15.3.2 Hidden Nodes....................................................405
15.4 Application to Image Recognition......................................407
15.5 Discussion and Further Reading........................................407
V Language Understanding 413
16 Natural Language Understanding 415
16.1 Parsing ............................................................. 417
16.1.1 Recursive Parser................................................418
16.1.2 Ambiguity...................................................... 420
16.1.3 Dynamic Programming Parser......................................422
16.1.4 Probabilistic Parser ...........................................426
16.1.5 Obtaining Probabilities for a PCFG..............................428
16.1.6 Lexicalized PCFG................................................428
16.2 Semantic Interpretation...............................................430
16.3 Concept/Knowledge Interpretation......................................431
16.4 Information Extraction................................................432
16.4.1 Applications of Information Extraction..........................432
16.4.2 Architecture for an Information Extraction System...............433
16.5 Discussion and Further Reading........................................435
References 437
Index
459
Artificial Intelligence
With an Introduction to Machine Learning
SECOND EDITION
The first edition of this popular textbook, Contemporary Artificial Intel-
ligence, provided an accessible and student friendly introduction to Al.
This fully revised and expanded update, Artificial Intelligence: With an
Introduction to Machine Learning, Second Edition, retains the same
accessibility and problem-solving approach, while providing new material
and methods.
The book is divided into five sections that focus on the most useful tech-
niques that have emerged from Al. The first section of the book covers log-
ic-based methods, while the second section focuses on probability-based
methods. Emergent intelligence is featured in the third section and explores
evolutionary computation and methods based on swarm intelligence. The
newest section comes next and provides a detailed overview of neural net-
works and deep learning. The final section of the book focuses on natural
language understanding.
Suitable for undergraduate and beginning graduate students, this class-
tested textbook provides students and other readers with key Al methods
and algorithms for solving challenging problems involving systems that
behave intelligently in specialized domains such as medical and software
diagnostics, financial decision making, speech and text recognition,
genetic analysis, and more.
|
any_adam_object | 1 |
author | Neapolitan, Richard E. Jiang, Xia 1967- |
author_GND | (DE-588)141964383 (DE-588)1161203680 |
author_facet | Neapolitan, Richard E. Jiang, Xia 1967- |
author_role | aut aut |
author_sort | Neapolitan, Richard E. |
author_variant | r e n re ren x j xj |
building | Verbundindex |
bvnumber | BV044905185 |
callnumber-first | Q - Science |
callnumber-label | Q335 |
callnumber-raw | Q335 |
callnumber-search | Q335 |
callnumber-sort | Q 3335 |
callnumber-subject | Q - General Science |
classification_rvk | ST 300 |
ctrlnum | (OCoLC)1043712926 (DE-599)BVBBV044905185 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02267nam a2200493 c 4500</leader><controlfield tag="001">BV044905185</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200831 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180416s2018 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">017050133</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781138502383</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-138-50238-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367571641</subfield><subfield code="9">978-0-367-57164-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1043712926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044905185</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-1050</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q335</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Neapolitan, Richard E.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141964383</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Contemporary artificial intelligence</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial intelligence</subfield><subfield code="b">with an introduction to machine learning</subfield><subfield code="c">Richard E. Neapolitan, Xia Jiang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 466 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman & Hall/CRC artificial intelligence and robotics series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Xia</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1161203680</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030298881&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030298881&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030298881</subfield></datafield></record></collection> |
id | DE-604.BV044905185 |
illustrated | Illustrated |
indexdate | 2024-08-01T10:39:27Z |
institution | BVB |
isbn | 9781138502383 9780367571641 |
language | English |
lccn | 017050133 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030298881 |
oclc_num | 1043712926 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-862 DE-BY-FWS DE-739 DE-1049 DE-83 DE-703 DE-573 DE-898 DE-BY-UBR DE-1050 |
owner_facet | DE-355 DE-BY-UBR DE-862 DE-BY-FWS DE-739 DE-1049 DE-83 DE-703 DE-573 DE-898 DE-BY-UBR DE-1050 |
physical | xiii, 466 Seiten Illustrationen, Diagramme |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | CRC Press |
record_format | marc |
series2 | Chapman & Hall/CRC artificial intelligence and robotics series |
spellingShingle | Neapolitan, Richard E. Jiang, Xia 1967- Artificial intelligence with an introduction to machine learning Artificial intelligence Maschinelles Lernen (DE-588)4193754-5 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4033447-8 |
title | Artificial intelligence with an introduction to machine learning |
title_alt | Contemporary artificial intelligence |
title_auth | Artificial intelligence with an introduction to machine learning |
title_exact_search | Artificial intelligence with an introduction to machine learning |
title_full | Artificial intelligence with an introduction to machine learning Richard E. Neapolitan, Xia Jiang |
title_fullStr | Artificial intelligence with an introduction to machine learning Richard E. Neapolitan, Xia Jiang |
title_full_unstemmed | Artificial intelligence with an introduction to machine learning Richard E. Neapolitan, Xia Jiang |
title_short | Artificial intelligence |
title_sort | artificial intelligence with an introduction to machine learning |
title_sub | with an introduction to machine learning |
topic | Artificial intelligence Maschinelles Lernen (DE-588)4193754-5 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
topic_facet | Artificial intelligence Maschinelles Lernen Künstliche Intelligenz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030298881&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030298881&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT neapolitanricharde contemporaryartificialintelligence AT jiangxia contemporaryartificialintelligence AT neapolitanricharde artificialintelligencewithanintroductiontomachinelearning AT jiangxia artificialintelligencewithanintroductiontomachinelearning |
Inhaltsverzeichnis
THWS Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 ST 300 N353(2) |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |