Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
March 2018
|
Schriftenreihe: | Memoirs of the American Mathematical Society
volume 252, number 1200 (first of 6 numbers) |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | v, 144, 4 ungezählte Seiten |
ISBN: | 9781470428020 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV044904938 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 180414s2018 |||| 00||| eng d | ||
020 | |a 9781470428020 |c pbk. |9 978-1-4704-2802-0 | ||
035 | |a (OCoLC)1031425675 | ||
035 | |a (DE-599)HBZHT019640342 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-355 |a DE-29T |a DE-11 | ||
084 | |a 35G15 |2 msc | ||
084 | |a 47D06 |2 msc | ||
084 | |a 58J65 |2 msc | ||
084 | |a 60H10 |2 msc | ||
084 | |a 35R01 |2 msc | ||
084 | |a 35H10 |2 msc | ||
084 | |a 58J50 |2 msc | ||
084 | |a 35H20 |2 msc | ||
084 | |a 60J65 |2 msc | ||
084 | |a 58J32 |2 msc | ||
100 | 1 | |a Nier, Francis |4 aut | |
245 | 1 | 0 | |a Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries |c F. Nier |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c March 2018 | |
300 | |a v, 144, 4 ungezählte Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society |v volume 252, number 1200 (first of 6 numbers) | |
650 | 0 | 7 | |a Fokker-Planck-Gleichung |0 (DE-588)4126333-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hypoelliptischer Operator |0 (DE-588)4138891-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | 2 | |a Hypoelliptischer Operator |0 (DE-588)4138891-4 |D s |
689 | 0 | 3 | |a Fokker-Planck-Gleichung |0 (DE-588)4126333-9 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Memoirs of the American Mathematical Society |v volume 252, number 1200 (first of 6 numbers) |w (DE-604)BV008000141 |9 1200 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030298638&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030298638 |
Datensatz im Suchindex
_version_ | 1804178462782521344 |
---|---|
adam_text | Contents
Chapter 1. Introduction 1
1.1. Motivations 1
1.2. The problem 2
1.3. Main results 5
1.4. Guidelines for reading this text 7
Chapter 2. One dimensional model problem 11
2.1. Presentation 11
2.2. Results 12
2.3. Fourier series in Ji1 and L2(R, p dp) 13
2.4. System of ODE and boundary value problem 20
2.5. Maximal accretivity 25
2.6. Extension of the resolvent and adjoint 28
Chapter 3. Cuspidal semigroups 31
3.1. Definition and first properties 31
3.2. Perturbation 35
3.3. Tensorization 36
Chapter 4. Separation of variables 39
4.1. Some notations 39
4.2. Traces and integration by parts 41
4.3. Identifying the domains 43
4.4. Inhomogeneous boundary value problems 46
Chapter 5. General boundary conditions for half-space problems 53
5.1. Assumptions for L and A 53
5.2. Maximal accretivity 54
5.3. Half-space and whole space problem 57
5.4. Resolvent estimates 60
Chapter 6. Geometric Kramers-Fokker-Planck operator 65
6.1. Notations and the geometric KFP-operator 65
6.2. The result by G. Lebeau 68
6.3. Partitions of unity 71
6.4. Geometric KFP-operator on cylinders 77
6.5. Comments 80
Chapter 7. Geometric KFP-operators on manifolds with boundary 81
7.1. Review of notations and outline 81
7.2. Half-cylinders with dqim = 0 83
iii
IV
CONTENTS
7.3. Dyadic partition of unity and rescaled estimates 84
7.4. General local metric on half-cylinders 91
7.5. Global result 100
Chapter 8. Variations on a Theorem 103
8.1. Corollaries 103
8.2. PT-symmetry 104
8.3. Adding a potential 104
8.4. Fiber bundle version 105
Chapter 9. Applications 109
9.1. Scalar Kramers-Fokker-Planck equations in a domain of Rd 109
9.2. Hypoelliptic Laplacian 118
Appendix A. Translation invariant model problems 129
Appendix B. Partitions of unity 137
Acknowledgements 139
Bibliography 141
|
any_adam_object | 1 |
author | Nier, Francis |
author_facet | Nier, Francis |
author_role | aut |
author_sort | Nier, Francis |
author_variant | f n fn |
building | Verbundindex |
bvnumber | BV044904938 |
ctrlnum | (OCoLC)1031425675 (DE-599)HBZHT019640342 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02181nam a2200517 cb4500</leader><controlfield tag="001">BV044904938</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180414s2018 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470428020</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-1-4704-2802-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1031425675</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT019640342</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35G15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">47D06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58J65</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60H10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35R01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35H10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58J50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35H20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60J65</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58J32</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nier, Francis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries</subfield><subfield code="c">F. Nier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">March 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">v, 144, 4 ungezählte Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">volume 252, number 1200 (first of 6 numbers)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fokker-Planck-Gleichung</subfield><subfield code="0">(DE-588)4126333-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hypoelliptischer Operator</subfield><subfield code="0">(DE-588)4138891-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hypoelliptischer Operator</subfield><subfield code="0">(DE-588)4138891-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Fokker-Planck-Gleichung</subfield><subfield code="0">(DE-588)4126333-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">volume 252, number 1200 (first of 6 numbers)</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">1200</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030298638&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030298638</subfield></datafield></record></collection> |
id | DE-604.BV044904938 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:04:22Z |
institution | BVB |
isbn | 9781470428020 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030298638 |
oclc_num | 1031425675 |
open_access_boolean | |
owner | DE-83 DE-355 DE-BY-UBR DE-29T DE-11 |
owner_facet | DE-83 DE-355 DE-BY-UBR DE-29T DE-11 |
physical | v, 144, 4 ungezählte Seiten |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | American Mathematical Society |
record_format | marc |
series | Memoirs of the American Mathematical Society |
series2 | Memoirs of the American Mathematical Society |
spelling | Nier, Francis aut Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries F. Nier Providence, Rhode Island American Mathematical Society March 2018 v, 144, 4 ungezählte Seiten txt rdacontent n rdamedia nc rdacarrier Memoirs of the American Mathematical Society volume 252, number 1200 (first of 6 numbers) Fokker-Planck-Gleichung (DE-588)4126333-9 gnd rswk-swf Hypoelliptischer Operator (DE-588)4138891-4 gnd rswk-swf Randwertproblem (DE-588)4048395-2 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Randwertproblem (DE-588)4048395-2 s Hypoelliptischer Operator (DE-588)4138891-4 s Fokker-Planck-Gleichung (DE-588)4126333-9 s DE-604 Memoirs of the American Mathematical Society volume 252, number 1200 (first of 6 numbers) (DE-604)BV008000141 1200 Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030298638&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nier, Francis Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries Memoirs of the American Mathematical Society Fokker-Planck-Gleichung (DE-588)4126333-9 gnd Hypoelliptischer Operator (DE-588)4138891-4 gnd Randwertproblem (DE-588)4048395-2 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4126333-9 (DE-588)4138891-4 (DE-588)4048395-2 (DE-588)4037379-4 |
title | Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries |
title_auth | Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries |
title_exact_search | Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries |
title_full | Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries F. Nier |
title_fullStr | Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries F. Nier |
title_full_unstemmed | Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries F. Nier |
title_short | Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries |
title_sort | boundary conditions and subelliptic estimates for geometric kramers fokker planck operators on manifolds with boundaries |
topic | Fokker-Planck-Gleichung (DE-588)4126333-9 gnd Hypoelliptischer Operator (DE-588)4138891-4 gnd Randwertproblem (DE-588)4048395-2 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Fokker-Planck-Gleichung Hypoelliptischer Operator Randwertproblem Mannigfaltigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030298638&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT nierfrancis boundaryconditionsandsubellipticestimatesforgeometrickramersfokkerplanckoperatorsonmanifoldswithboundaries |