Introduction to algebraic geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2018]
|
Schriftenreihe: | Graduate studies in mathematics
188 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xii, 484 Seiten |
ISBN: | 9781470435189 1470435187 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV044864506 | ||
003 | DE-604 | ||
005 | 20210125 | ||
007 | t | ||
008 | 180313s2018 b||| 00||| eng d | ||
020 | |a 9781470435189 |9 978-1-4704-3518-9 | ||
020 | |a 1470435187 |9 1-4704-3518-7 | ||
035 | |a (OCoLC)1040697697 | ||
035 | |a (DE-599)BVBBV044864506 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-20 |a DE-19 |a DE-739 |a DE-83 |a DE-29T |a DE-11 |a DE-188 | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a 14-01 |2 msc | ||
100 | 1 | |a Cutkosky, Steven Dale |0 (DE-588)1070878626 |4 aut | |
245 | 1 | 0 | |a Introduction to algebraic geometry |c Steven Dale Cutkosky |
246 | 1 | 3 | |a Algebraic geometry |
246 | 1 | 0 | |a Algebraic geometry |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a xii, 484 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate studies in mathematics |v 188 | |
650 | 0 | 7 | |a Geometrische Algebra |0 (DE-588)4156707-9 |2 gnd |9 rswk-swf |
653 | 0 | |a Geometry, Algebraic | |
653 | 0 | |a Algebraic geometry -- Instructional exposition (textbooks, tutorial papers, etc.) | |
653 | 0 | |a Geometry, Algebraic | |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Geometrische Algebra |0 (DE-588)4156707-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4704-4670-3 |
830 | 0 | |a Graduate studies in mathematics |v 188 |w (DE-604)BV009739289 |9 188 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030259088&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030259088 |
Datensatz im Suchindex
_version_ | 1804178390771564544 |
---|---|
adam_text | Contents
Preface xi
Chapter 1. A Crash Course in Commutative Algebra 1
§1.1. Basic algebra 1
§1.2. Field extensions 6
§1.3. Modules 8
§1.4. Localization 9
§1.5. Noetherian rings and factorization 10
§1.6. Primary decomposition 13
§1.7. Integral extensions 16
§1.8. Dimension 19
§1.9. Depth 20
§1.10. Normal rings and regular rings 22
Chapter 2. Affine Varieties 27
§2.1. Affine space and algebraic sets 27
§2.2. Regular functions and regular maps of affine algebraic sets 33
§2.3. Finite maps 40
§2.4. Dimension of algebraic sets 42
§2.5. Regular functions and regular maps of quasi-affine varieties 48
§2.6. Rational maps of affine varieties 58
Chapter 3. Projective Varieties 63
§3.1. Standard graded algebras 63
v
VI
Contents
§3.2. Projective varieties 67
§3.3. Grassmann varieties 73
§3.4. Regular functions and regular maps of quasi-projective
varieties 74
Chapter 4. Regular and Rational Maps of Quasi-projective Varieties 87
§4.1. Criteria for regular maps 87
§4.2. Linear isomorphisms of projective space 90
§4.3. The Veronese embedding 91
§4.4. Rational maps of quasi-projective varieties 93
§4.5. Projection from a linear subspace 95
Chapter 5. Products 99
§5.1. Tensor products 99
§5.2. Products of varieties 101
§5.3. The Segre embedding 105
§5.4. Graphs of regular and rational maps 106
Chapter 6. The Blow-up of an Ideal 111
§6.1. The blow-up of an ideal in an affine variety 111
§6.2. The blow-up of an ideal in a projective variety 120
Chapter 7. Finite Maps of Quasi-projective Varieties 127
§7.1. Affine and finite maps 127
§7.2. Finite maps 131
§7.3. Construction of the normalization 135
Chapter 8. Dimension of Quasi-projective Algebraic Sets 139
§8.1. Properties of dimension 139
§8.2. The theorem on dimension of fibers 141
Chapter 9. Zariski’s Main Theorem 147
Chapter 10. Nonsingularity 153
§10.1. Regular parameters 153
§10.2. Local equations 155
§10.3. The tangent space 156
§10.4. Nonsingularity and the singular locus 159
§10.5. Applications to rational maps 165
Contents vii
§10.6. Factorization of birational regular maps of nonsingular
surfaces 168
§10.7. Projective embedding of nonsingular varieties 170
§10.8. Complex manifolds 175
Chapter 11. Sheaves 181
§11.1. Limits 181
§11.2. Presheaves and sheaves 185
§11.3. Some sheaves associated to modules 196
§11.4. Quasi-coherent and coherent sheaves 200
§11.5. Constructions of sheaves from sheaves of modules 204
§11.6. Some theorems about coherent sheaves 209
Chapter 12. Applications to Regular and Rational Maps 221
§12.1. Blow-ups of ideal sheaves 221
§12.2. Resolution of singularities 225
§12.3. Valuations in algebraic geometry 228
§12.4. Factorization of birational maps 232
§12.5. Monomialization of maps 236
Chapter 13. Divisors 239
§13.1. Divisors and the class group 240
§13.2. The sheaf associated to a divisor 242
§13.3. Divisors associated to forms 249
§13.4. Calculation of some class groups 249
§13.5. The class group of a curve 254
§13.6. Divisors, rational maps, and linear systems 259
§13.7. Criteria for closed embeddings 264
§13.8. Invertible sheaves 269
§13.9. Transition functions 271
Chapter 14. Differential Forms and the Canonical Divisor 279
§14.1. Derivations and Kahler differentials 279
§14.2. Differentials on varieties 283
§14.3. n-forms and canonical divisors 286
Chapter 15. Schemes 289
§15.1. Subschemes of varieties, schemes, and Cartier divisors 289
§15.2. Blow-ups of ideals and associated graded rings of ideals 293
Contents
vm
§15.3. Abstract algebraic varieties 295
§15.4. Varieties over nonclosed fields 296
§15.5. General schemes 296
Chapter 16. The Degree of a Projective Variety 299
Chapter 17. Cohomology 307
§17.1. Complexes 307
§17.2. Sheaf cohomology 308
§17.3. Cech cohomology 310
§17.4. Applications 312
§17.5. Higher direct images of sheaves 320
§17.6. Local cohomology and regularity 325
Chapter 18. Curves 333
§18.1. The Riemann-Roch inequality 334
§18.2. Serre duality 335
§18.3. The Riemann-Roch theorem 340
§18.4. The Riemann-Roch problem on varieties 343
§18.5. The Hurwitz theorem 345
§18.6. Inseparable maps of curves 348
§18.7. Elliptic curves 351
§18.8. Complex curves 358
§18.9. Abelian varieties and Jacobians of curves 360
Chapter 19. An Introduction to Intersection Theory 365
§19.1. Definition, properties, and some examples of intersection
numbers 366
§19.2. Applications to degree and multiplicity 375
Chapter 20. Surfaces 379
§20.1. The Riemann-Roch theorem and the Hodge index
theorem on a surface 379
§20.2. Contractions and linear systems 383
/
Chapter 21. Ramification and Etale Maps 391
§21.1. Norms and Traces 392
§21.2. Integral extensions 393
§21.3. Discriminants and ramification 398
Contents
IX
§21.4. Ramification of regular maps of varieties 406
§21.5. Completion 408
§21.6. Zariski’s main theorem and Zariski’s subspace theorem 413
§21.7. Galois theory of varieties 421
§21.8. Derivations and Kahler differentials redux 424
A
§21.9. Etale maps and uniformizing parameters 426
§21.10. Purity of the branch locus and the Abhyankar-Jung
theorem 433
§21.11. Galois theory of local rings 438
§21.12. A proof of the Abhyankar-Jung theorem 441
Chapter 22. Bertini’s Theorems and General Fibers of Maps 451
§22.1. Geometric integrality 452
§22.2. Nonsingularity of the general fiber 454
§22.3. Bertini’s second theorem 457
§22.4. Bertini’s first theorem 458
Bibliography 469
Index 477
|
any_adam_object | 1 |
author | Cutkosky, Steven Dale |
author_GND | (DE-588)1070878626 |
author_facet | Cutkosky, Steven Dale |
author_role | aut |
author_sort | Cutkosky, Steven Dale |
author_variant | s d c sd sdc |
building | Verbundindex |
bvnumber | BV044864506 |
classification_rvk | SK 240 |
ctrlnum | (OCoLC)1040697697 (DE-599)BVBBV044864506 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01881nam a2200457 cb4500</leader><controlfield tag="001">BV044864506</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210125 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180313s2018 b||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470435189</subfield><subfield code="9">978-1-4704-3518-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1470435187</subfield><subfield code="9">1-4704-3518-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1040697697</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044864506</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cutkosky, Steven Dale</subfield><subfield code="0">(DE-588)1070878626</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to algebraic geometry</subfield><subfield code="c">Steven Dale Cutkosky</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Algebraic geometry</subfield></datafield><datafield tag="246" ind1="1" ind2="0"><subfield code="a">Algebraic geometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 484 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">188</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Algebra</subfield><subfield code="0">(DE-588)4156707-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Algebraic geometry -- Instructional exposition (textbooks, tutorial papers, etc.)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Algebra</subfield><subfield code="0">(DE-588)4156707-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-4670-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">188</subfield><subfield code="w">(DE-604)BV009739289</subfield><subfield code="9">188</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030259088&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030259088</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV044864506 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:03:13Z |
institution | BVB |
isbn | 9781470435189 1470435187 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030259088 |
oclc_num | 1040697697 |
open_access_boolean | |
owner | DE-384 DE-20 DE-19 DE-BY-UBM DE-739 DE-83 DE-29T DE-11 DE-188 |
owner_facet | DE-384 DE-20 DE-19 DE-BY-UBM DE-739 DE-83 DE-29T DE-11 DE-188 |
physical | xii, 484 Seiten |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | American Mathematical Society |
record_format | marc |
series | Graduate studies in mathematics |
series2 | Graduate studies in mathematics |
spelling | Cutkosky, Steven Dale (DE-588)1070878626 aut Introduction to algebraic geometry Steven Dale Cutkosky Algebraic geometry Providence, Rhode Island American Mathematical Society [2018] © 2018 xii, 484 Seiten txt rdacontent n rdamedia nc rdacarrier Graduate studies in mathematics 188 Geometrische Algebra (DE-588)4156707-9 gnd rswk-swf Geometry, Algebraic Algebraic geometry -- Instructional exposition (textbooks, tutorial papers, etc.) (DE-588)4151278-9 Einführung gnd-content Geometrische Algebra (DE-588)4156707-9 s DE-604 Erscheint auch als Online-Ausgabe 978-1-4704-4670-3 Graduate studies in mathematics 188 (DE-604)BV009739289 188 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030259088&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cutkosky, Steven Dale Introduction to algebraic geometry Graduate studies in mathematics Geometrische Algebra (DE-588)4156707-9 gnd |
subject_GND | (DE-588)4156707-9 (DE-588)4151278-9 |
title | Introduction to algebraic geometry |
title_alt | Algebraic geometry |
title_auth | Introduction to algebraic geometry |
title_exact_search | Introduction to algebraic geometry |
title_full | Introduction to algebraic geometry Steven Dale Cutkosky |
title_fullStr | Introduction to algebraic geometry Steven Dale Cutkosky |
title_full_unstemmed | Introduction to algebraic geometry Steven Dale Cutkosky |
title_short | Introduction to algebraic geometry |
title_sort | introduction to algebraic geometry |
topic | Geometrische Algebra (DE-588)4156707-9 gnd |
topic_facet | Geometrische Algebra Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030259088&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV009739289 |
work_keys_str_mv | AT cutkoskystevendale introductiontoalgebraicgeometry AT cutkoskystevendale algebraicgeometry |