Harmonic analysis method for nonlinear evolution equations, I:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2011
|
Schlagworte: | |
Beschreibung: | xiv, 283 p. |
ISBN: | 9789814360746 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044847316 | ||
003 | DE-604 | ||
005 | 20180305 | ||
007 | cr|uuu---uuuuu | ||
008 | 180305s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814360746 |c Online |9 978-981-4360-74-6 | ||
035 | |a (ZDB-38-ESG)ebr10524626 | ||
035 | |a (OCoLC)1074805494 | ||
035 | |a (DE-599)BVBBV044847316 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 515.2433 |2 22 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a Wang, Baoxiang |e Verfasser |4 aut | |
245 | 1 | 0 | |a Harmonic analysis method for nonlinear evolution equations, I |c Baoxiang Wang ... [et al.] |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2011 | |
300 | |a xiv, 283 p. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Includes bibliographical references and index | |
505 | 8 | |a 1. Fourier multiplier, function space X [superscript]s [subscript]p,q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrodinger equations -- 8. Boltzmann equation without angular cutoff | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Differential equations, Nonlinear | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Evolutionsgleichung |0 (DE-588)4221363-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Evolutionsgleichung |0 (DE-588)4221363-0 |D s |
689 | 0 | 1 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-981-4360-73-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 981-4360-73-2 |
912 | |a ZDB-38-ESG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030242178 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804178360674287616 |
---|---|
any_adam_object | |
author | Wang, Baoxiang |
author_facet | Wang, Baoxiang |
author_role | aut |
author_sort | Wang, Baoxiang |
author_variant | b w bw |
building | Verbundindex |
bvnumber | BV044847316 |
classification_rvk | SK 540 |
collection | ZDB-38-ESG |
contents | Includes bibliographical references and index 1. Fourier multiplier, function space X [superscript]s [subscript]p,q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrodinger equations -- 8. Boltzmann equation without angular cutoff |
ctrlnum | (ZDB-38-ESG)ebr10524626 (OCoLC)1074805494 (DE-599)BVBBV044847316 |
dewey-full | 515.2433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.2433 |
dewey-search | 515.2433 |
dewey-sort | 3515.2433 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02114nmm a2200445zc 4500</leader><controlfield tag="001">BV044847316</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180305 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180305s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814360746</subfield><subfield code="c">Online</subfield><subfield code="9">978-981-4360-74-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-ESG)ebr10524626</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1074805494</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044847316</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.2433</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Baoxiang</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic analysis method for nonlinear evolution equations, I</subfield><subfield code="c">Baoxiang Wang ... [et al.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 283 p.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Fourier multiplier, function space X [superscript]s [subscript]p,q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrodinger equations -- 8. Boltzmann equation without angular cutoff</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Evolutionsgleichung</subfield><subfield code="0">(DE-588)4221363-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Evolutionsgleichung</subfield><subfield code="0">(DE-588)4221363-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-981-4360-73-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">981-4360-73-2</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-38-ESG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030242178</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044847316 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:02:44Z |
institution | BVB |
isbn | 9789814360746 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030242178 |
oclc_num | 1074805494 |
open_access_boolean | |
physical | xiv, 283 p. |
psigel | ZDB-38-ESG |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Wang, Baoxiang Verfasser aut Harmonic analysis method for nonlinear evolution equations, I Baoxiang Wang ... [et al.] Singapore World Scientific Pub. Co. c2011 xiv, 283 p. txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index 1. Fourier multiplier, function space X [superscript]s [subscript]p,q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrodinger equations -- 8. Boltzmann equation without angular cutoff Harmonic analysis Differential equations, Nonlinear Mathematical analysis Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Nichtlineare Evolutionsgleichung (DE-588)4221363-0 gnd rswk-swf Nichtlineare Evolutionsgleichung (DE-588)4221363-0 s Harmonische Analyse (DE-588)4023453-8 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 978-981-4360-73-9 Erscheint auch als Druck-Ausgabe, Hardcover 981-4360-73-2 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wang, Baoxiang Harmonic analysis method for nonlinear evolution equations, I Includes bibliographical references and index 1. Fourier multiplier, function space X [superscript]s [subscript]p,q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrodinger equations -- 8. Boltzmann equation without angular cutoff Harmonic analysis Differential equations, Nonlinear Mathematical analysis Harmonische Analyse (DE-588)4023453-8 gnd Nichtlineare Evolutionsgleichung (DE-588)4221363-0 gnd |
subject_GND | (DE-588)4023453-8 (DE-588)4221363-0 |
title | Harmonic analysis method for nonlinear evolution equations, I |
title_auth | Harmonic analysis method for nonlinear evolution equations, I |
title_exact_search | Harmonic analysis method for nonlinear evolution equations, I |
title_full | Harmonic analysis method for nonlinear evolution equations, I Baoxiang Wang ... [et al.] |
title_fullStr | Harmonic analysis method for nonlinear evolution equations, I Baoxiang Wang ... [et al.] |
title_full_unstemmed | Harmonic analysis method for nonlinear evolution equations, I Baoxiang Wang ... [et al.] |
title_short | Harmonic analysis method for nonlinear evolution equations, I |
title_sort | harmonic analysis method for nonlinear evolution equations i |
topic | Harmonic analysis Differential equations, Nonlinear Mathematical analysis Harmonische Analyse (DE-588)4023453-8 gnd Nichtlineare Evolutionsgleichung (DE-588)4221363-0 gnd |
topic_facet | Harmonic analysis Differential equations, Nonlinear Mathematical analysis Harmonische Analyse Nichtlineare Evolutionsgleichung |
work_keys_str_mv | AT wangbaoxiang harmonicanalysismethodfornonlinearevolutionequationsi |