Feynman-Kac-type theorems and Gibbs measures on path space: with applications to rigorous quantum field theory
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
c2011
|
Schriftenreihe: | De Gruyter studies in mathematics
34 |
Schlagworte: | |
Beschreibung: | xi, 505 p. |
ISBN: | 9783110201482 9783110203738 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044846388 | ||
003 | DE-604 | ||
005 | 20180305 | ||
007 | cr|uuu---uuuuu | ||
008 | 180305s2011 |||| o||u| ||||||eng d | ||
020 | |a 9783110201482 |9 978-3-11-020148-2 | ||
020 | |a 9783110203738 |c Online |9 978-3-11-020373-8 | ||
035 | |a (ZDB-38-ESG)ebr10498746 | ||
035 | |a (OCoLC)763156949 | ||
035 | |a (DE-599)BVBBV044846388 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 515/.724 |2 22 | |
100 | 1 | |a Lorinczi, Jozsef |e Verfasser |4 aut | |
245 | 1 | 0 | |a Feynman-Kac-type theorems and Gibbs measures on path space |b with applications to rigorous quantum field theory |c by Jozsef Lorinczi, Fumio Hiroshima, Volker Betz |
264 | 1 | |a Berlin |b De Gruyter |c c2011 | |
300 | |a xi, 505 p. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter studies in mathematics |v 34 | |
505 | 8 | |a Includes bibliographical references and index | |
505 | 8 | |a pt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory | |
650 | 4 | |a Integration, Functional | |
650 | 4 | |a Stochastic analysis | |
650 | 4 | |a Quantum field theory |x Mathematics | |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Analysis |0 (DE-588)4132272-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Feynman-Kac-Formel |0 (DE-588)4820124-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gibbs-Maß |0 (DE-588)4157328-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Selbstadjungierter Operator |0 (DE-588)4180810-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Selbstadjungierter Operator |0 (DE-588)4180810-1 |D s |
689 | 0 | 1 | |a Feynman-Kac-Formel |0 (DE-588)4820124-8 |D s |
689 | 0 | 2 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 0 | 3 | |a Gibbs-Maß |0 (DE-588)4157328-6 |D s |
689 | 0 | 4 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 5 | |a Stochastische Analysis |0 (DE-588)4132272-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Hiroshima, Fumio |e Sonstige |4 oth | |
700 | 1 | |a Betz, Volker |e Sonstige |4 oth | |
912 | |a ZDB-38-ESG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030241249 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804178358802579456 |
---|---|
any_adam_object | |
author | Lorinczi, Jozsef |
author_facet | Lorinczi, Jozsef |
author_role | aut |
author_sort | Lorinczi, Jozsef |
author_variant | j l jl |
building | Verbundindex |
bvnumber | BV044846388 |
collection | ZDB-38-ESG |
contents | Includes bibliographical references and index pt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory |
ctrlnum | (ZDB-38-ESG)ebr10498746 (OCoLC)763156949 (DE-599)BVBBV044846388 |
dewey-full | 515/.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.724 |
dewey-search | 515/.724 |
dewey-sort | 3515 3724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02268nmm a2200553zcb4500</leader><controlfield tag="001">BV044846388</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180305 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180305s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110201482</subfield><subfield code="9">978-3-11-020148-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110203738</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-11-020373-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-ESG)ebr10498746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)763156949</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044846388</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.724</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lorinczi, Jozsef</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feynman-Kac-type theorems and Gibbs measures on path space</subfield><subfield code="b">with applications to rigorous quantum field theory</subfield><subfield code="c">by Jozsef Lorinczi, Fumio Hiroshima, Volker Betz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 505 p.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">34</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">pt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integration, Functional</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feynman-Kac-Formel</subfield><subfield code="0">(DE-588)4820124-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gibbs-Maß</subfield><subfield code="0">(DE-588)4157328-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Feynman-Kac-Formel</subfield><subfield code="0">(DE-588)4820124-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Gibbs-Maß</subfield><subfield code="0">(DE-588)4157328-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hiroshima, Fumio</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Betz, Volker</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-38-ESG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030241249</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044846388 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:02:42Z |
institution | BVB |
isbn | 9783110201482 9783110203738 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030241249 |
oclc_num | 763156949 |
open_access_boolean | |
physical | xi, 505 p. |
psigel | ZDB-38-ESG |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter studies in mathematics |
spelling | Lorinczi, Jozsef Verfasser aut Feynman-Kac-type theorems and Gibbs measures on path space with applications to rigorous quantum field theory by Jozsef Lorinczi, Fumio Hiroshima, Volker Betz Berlin De Gruyter c2011 xi, 505 p. txt rdacontent c rdamedia cr rdacarrier De Gruyter studies in mathematics 34 Includes bibliographical references and index pt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory Integration, Functional Stochastic analysis Quantum field theory Mathematics Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Stochastische Analysis (DE-588)4132272-1 gnd rswk-swf Pfadintegral (DE-588)4173973-5 gnd rswk-swf Feynman-Kac-Formel (DE-588)4820124-8 gnd rswk-swf Gibbs-Maß (DE-588)4157328-6 gnd rswk-swf Selbstadjungierter Operator (DE-588)4180810-1 gnd rswk-swf Selbstadjungierter Operator (DE-588)4180810-1 s Feynman-Kac-Formel (DE-588)4820124-8 s Pfadintegral (DE-588)4173973-5 s Gibbs-Maß (DE-588)4157328-6 s Quantenfeldtheorie (DE-588)4047984-5 s Stochastische Analysis (DE-588)4132272-1 s 1\p DE-604 Hiroshima, Fumio Sonstige oth Betz, Volker Sonstige oth 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lorinczi, Jozsef Feynman-Kac-type theorems and Gibbs measures on path space with applications to rigorous quantum field theory Includes bibliographical references and index pt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory Integration, Functional Stochastic analysis Quantum field theory Mathematics Quantenfeldtheorie (DE-588)4047984-5 gnd Stochastische Analysis (DE-588)4132272-1 gnd Pfadintegral (DE-588)4173973-5 gnd Feynman-Kac-Formel (DE-588)4820124-8 gnd Gibbs-Maß (DE-588)4157328-6 gnd Selbstadjungierter Operator (DE-588)4180810-1 gnd |
subject_GND | (DE-588)4047984-5 (DE-588)4132272-1 (DE-588)4173973-5 (DE-588)4820124-8 (DE-588)4157328-6 (DE-588)4180810-1 |
title | Feynman-Kac-type theorems and Gibbs measures on path space with applications to rigorous quantum field theory |
title_auth | Feynman-Kac-type theorems and Gibbs measures on path space with applications to rigorous quantum field theory |
title_exact_search | Feynman-Kac-type theorems and Gibbs measures on path space with applications to rigorous quantum field theory |
title_full | Feynman-Kac-type theorems and Gibbs measures on path space with applications to rigorous quantum field theory by Jozsef Lorinczi, Fumio Hiroshima, Volker Betz |
title_fullStr | Feynman-Kac-type theorems and Gibbs measures on path space with applications to rigorous quantum field theory by Jozsef Lorinczi, Fumio Hiroshima, Volker Betz |
title_full_unstemmed | Feynman-Kac-type theorems and Gibbs measures on path space with applications to rigorous quantum field theory by Jozsef Lorinczi, Fumio Hiroshima, Volker Betz |
title_short | Feynman-Kac-type theorems and Gibbs measures on path space |
title_sort | feynman kac type theorems and gibbs measures on path space with applications to rigorous quantum field theory |
title_sub | with applications to rigorous quantum field theory |
topic | Integration, Functional Stochastic analysis Quantum field theory Mathematics Quantenfeldtheorie (DE-588)4047984-5 gnd Stochastische Analysis (DE-588)4132272-1 gnd Pfadintegral (DE-588)4173973-5 gnd Feynman-Kac-Formel (DE-588)4820124-8 gnd Gibbs-Maß (DE-588)4157328-6 gnd Selbstadjungierter Operator (DE-588)4180810-1 gnd |
topic_facet | Integration, Functional Stochastic analysis Quantum field theory Mathematics Quantenfeldtheorie Stochastische Analysis Pfadintegral Feynman-Kac-Formel Gibbs-Maß Selbstadjungierter Operator |
work_keys_str_mv | AT lorinczijozsef feynmankactypetheoremsandgibbsmeasuresonpathspacewithapplicationstorigorousquantumfieldtheory AT hiroshimafumio feynmankactypetheoremsandgibbsmeasuresonpathspacewithapplicationstorigorousquantumfieldtheory AT betzvolker feynmankactypetheoremsandgibbsmeasuresonpathspacewithapplicationstorigorousquantumfieldtheory |