New directions in statistical signal processing: from systems to brain
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass.
MIT Press
c2007
|
Schriftenreihe: | Neural information processing series
|
Schlagworte: | |
Beschreibung: | vi, 514 p. |
ISBN: | 0262083485 9780262083485 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044836640 | ||
003 | DE-604 | ||
005 | 20180305 | ||
007 | cr|uuu---uuuuu | ||
008 | 180305s2007 |||| o||u| ||||||eng d | ||
015 | |a GBA671791 |2 dnb | ||
020 | |a 0262083485 |c alk. paper |9 0-262-08348-5 | ||
020 | |a 9780262083485 |c alk. paper |9 978-0-262-08348-5 | ||
035 | |a (ZDB-38-ESG)ebr10173712 | ||
035 | |a (OCoLC)77521428 | ||
035 | |a (DE-599)BVBBV044836640 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 612.8/2 |2 22 | |
245 | 1 | 0 | |a New directions in statistical signal processing |b from systems to brain |c edited by Simon Haykin ... [et al.] |
264 | 1 | |a Cambridge, Mass. |b MIT Press |c c2007 | |
300 | |a vi, 514 p. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Neural information processing series | |
505 | 8 | |a Includes bibliographical references (p. [465]-508) and index | |
505 | 8 | 0 | |t Modeling the mind : from circuits to systems |r Suzanna Becker -- |t Empirical statistics and stochastic models for visual signals |r David Mumford -- |g The |t machine cocktail party problem |r Simon Haykin, Zhe Chen -- |t Sensor adaptive signal processing of biological nanotubes (ion channels) at macroscopic and nano scales |r Vikram Krishnamurthy -- |t Spin diffusion : a new perspective in magnetic resonance imaging |r Timothy R. Field -- |t What makes a dynamical system computationally powerful? |r Robert Legenstein, Wolfgang Maass -- |g A |t variational principle for graphical models |r Martin J. Wainwright, Michael I. Jordan -- |t Modeling large dynamical systems with dynamical consistent neural networks |r Hans-Georg Zimmermann ... [et al.] -- |t Diversity in communication : from source coding to wireless networks |r Suhas N. Diggavi -- |t Designing patterns for easy recognition : information transmission with low-density parity-check codes |r Frank R. Kschischang, Masoud Ardakani -- |t Turbo processing |r Claude Berrou, Charlotte Langlais, Fabrice Seguin -- |t Blind signal processing based on data geometric properties |r Konstantinos Diamantaras -- |t Game-theoretic learning |r Geoffrey J. Gordon -- |t Learning observable operator models via the efficient sharpening algorithm |r Herbert Jaeger ... [et al.] |
650 | 4 | |a Neural networks (Neurobiology) | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Signal processing |x Statistical methods | |
650 | 4 | |a Neural computers | |
700 | 1 | |a Haykin, Simon S. |d 1931- |e Sonstige |4 oth | |
912 | |a ZDB-38-ESG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030231503 |
Datensatz im Suchindex
_version_ | 1804178341704499200 |
---|---|
any_adam_object | |
author_additional | Suzanna Becker -- David Mumford -- Simon Haykin, Zhe Chen -- Vikram Krishnamurthy -- Timothy R. Field -- Robert Legenstein, Wolfgang Maass -- Martin J. Wainwright, Michael I. Jordan -- Hans-Georg Zimmermann ... [et al.] -- Suhas N. Diggavi -- Frank R. Kschischang, Masoud Ardakani -- Claude Berrou, Charlotte Langlais, Fabrice Seguin -- Konstantinos Diamantaras -- Geoffrey J. Gordon -- Herbert Jaeger ... [et al.] |
building | Verbundindex |
bvnumber | BV044836640 |
collection | ZDB-38-ESG |
contents | Includes bibliographical references (p. [465]-508) and index Modeling the mind : from circuits to systems Empirical statistics and stochastic models for visual signals machine cocktail party problem Sensor adaptive signal processing of biological nanotubes (ion channels) at macroscopic and nano scales Spin diffusion : a new perspective in magnetic resonance imaging What makes a dynamical system computationally powerful? variational principle for graphical models Modeling large dynamical systems with dynamical consistent neural networks Diversity in communication : from source coding to wireless networks Designing patterns for easy recognition : information transmission with low-density parity-check codes Turbo processing Blind signal processing based on data geometric properties Game-theoretic learning Learning observable operator models via the efficient sharpening algorithm |
ctrlnum | (ZDB-38-ESG)ebr10173712 (OCoLC)77521428 (DE-599)BVBBV044836640 |
dewey-full | 612.8/2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 612 - Human physiology |
dewey-raw | 612.8/2 |
dewey-search | 612.8/2 |
dewey-sort | 3612.8 12 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02555nmm a2200385zc 4500</leader><controlfield tag="001">BV044836640</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180305 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180305s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA671791</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262083485</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-262-08348-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262083485</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-262-08348-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-ESG)ebr10173712</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)77521428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044836640</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612.8/2</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New directions in statistical signal processing</subfield><subfield code="b">from systems to brain</subfield><subfield code="c">edited by Simon Haykin ... [et al.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">MIT Press</subfield><subfield code="c">c2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vi, 514 p.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Neural information processing series</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Includes bibliographical references (p. [465]-508) and index</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Modeling the mind : from circuits to systems</subfield><subfield code="r">Suzanna Becker --</subfield><subfield code="t">Empirical statistics and stochastic models for visual signals</subfield><subfield code="r">David Mumford --</subfield><subfield code="g">The</subfield><subfield code="t">machine cocktail party problem</subfield><subfield code="r">Simon Haykin, Zhe Chen --</subfield><subfield code="t">Sensor adaptive signal processing of biological nanotubes (ion channels) at macroscopic and nano scales</subfield><subfield code="r">Vikram Krishnamurthy --</subfield><subfield code="t">Spin diffusion : a new perspective in magnetic resonance imaging</subfield><subfield code="r">Timothy R. Field --</subfield><subfield code="t">What makes a dynamical system computationally powerful?</subfield><subfield code="r">Robert Legenstein, Wolfgang Maass --</subfield><subfield code="g">A</subfield><subfield code="t">variational principle for graphical models</subfield><subfield code="r">Martin J. Wainwright, Michael I. Jordan --</subfield><subfield code="t">Modeling large dynamical systems with dynamical consistent neural networks</subfield><subfield code="r">Hans-Georg Zimmermann ... [et al.] --</subfield><subfield code="t">Diversity in communication : from source coding to wireless networks</subfield><subfield code="r">Suhas N. Diggavi --</subfield><subfield code="t">Designing patterns for easy recognition : information transmission with low-density parity-check codes</subfield><subfield code="r">Frank R. Kschischang, Masoud Ardakani --</subfield><subfield code="t">Turbo processing</subfield><subfield code="r">Claude Berrou, Charlotte Langlais, Fabrice Seguin --</subfield><subfield code="t">Blind signal processing based on data geometric properties</subfield><subfield code="r">Konstantinos Diamantaras --</subfield><subfield code="t">Game-theoretic learning</subfield><subfield code="r">Geoffrey J. Gordon --</subfield><subfield code="t">Learning observable operator models via the efficient sharpening algorithm</subfield><subfield code="r">Herbert Jaeger ... [et al.]</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Neurobiology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural computers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haykin, Simon S.</subfield><subfield code="d">1931-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-38-ESG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030231503</subfield></datafield></record></collection> |
id | DE-604.BV044836640 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:02:26Z |
institution | BVB |
isbn | 0262083485 9780262083485 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030231503 |
oclc_num | 77521428 |
open_access_boolean | |
physical | vi, 514 p. |
psigel | ZDB-38-ESG |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | MIT Press |
record_format | marc |
series2 | Neural information processing series |
spelling | New directions in statistical signal processing from systems to brain edited by Simon Haykin ... [et al.] Cambridge, Mass. MIT Press c2007 vi, 514 p. txt rdacontent c rdamedia cr rdacarrier Neural information processing series Includes bibliographical references (p. [465]-508) and index Modeling the mind : from circuits to systems Suzanna Becker -- Empirical statistics and stochastic models for visual signals David Mumford -- The machine cocktail party problem Simon Haykin, Zhe Chen -- Sensor adaptive signal processing of biological nanotubes (ion channels) at macroscopic and nano scales Vikram Krishnamurthy -- Spin diffusion : a new perspective in magnetic resonance imaging Timothy R. Field -- What makes a dynamical system computationally powerful? Robert Legenstein, Wolfgang Maass -- A variational principle for graphical models Martin J. Wainwright, Michael I. Jordan -- Modeling large dynamical systems with dynamical consistent neural networks Hans-Georg Zimmermann ... [et al.] -- Diversity in communication : from source coding to wireless networks Suhas N. Diggavi -- Designing patterns for easy recognition : information transmission with low-density parity-check codes Frank R. Kschischang, Masoud Ardakani -- Turbo processing Claude Berrou, Charlotte Langlais, Fabrice Seguin -- Blind signal processing based on data geometric properties Konstantinos Diamantaras -- Game-theoretic learning Geoffrey J. Gordon -- Learning observable operator models via the efficient sharpening algorithm Herbert Jaeger ... [et al.] Neural networks (Neurobiology) Neural networks (Computer science) Signal processing Statistical methods Neural computers Haykin, Simon S. 1931- Sonstige oth |
spellingShingle | New directions in statistical signal processing from systems to brain Includes bibliographical references (p. [465]-508) and index Modeling the mind : from circuits to systems Empirical statistics and stochastic models for visual signals machine cocktail party problem Sensor adaptive signal processing of biological nanotubes (ion channels) at macroscopic and nano scales Spin diffusion : a new perspective in magnetic resonance imaging What makes a dynamical system computationally powerful? variational principle for graphical models Modeling large dynamical systems with dynamical consistent neural networks Diversity in communication : from source coding to wireless networks Designing patterns for easy recognition : information transmission with low-density parity-check codes Turbo processing Blind signal processing based on data geometric properties Game-theoretic learning Learning observable operator models via the efficient sharpening algorithm Neural networks (Neurobiology) Neural networks (Computer science) Signal processing Statistical methods Neural computers |
title | New directions in statistical signal processing from systems to brain |
title_alt | Modeling the mind : from circuits to systems Empirical statistics and stochastic models for visual signals machine cocktail party problem Sensor adaptive signal processing of biological nanotubes (ion channels) at macroscopic and nano scales Spin diffusion : a new perspective in magnetic resonance imaging What makes a dynamical system computationally powerful? variational principle for graphical models Modeling large dynamical systems with dynamical consistent neural networks Diversity in communication : from source coding to wireless networks Designing patterns for easy recognition : information transmission with low-density parity-check codes Turbo processing Blind signal processing based on data geometric properties Game-theoretic learning Learning observable operator models via the efficient sharpening algorithm |
title_auth | New directions in statistical signal processing from systems to brain |
title_exact_search | New directions in statistical signal processing from systems to brain |
title_full | New directions in statistical signal processing from systems to brain edited by Simon Haykin ... [et al.] |
title_fullStr | New directions in statistical signal processing from systems to brain edited by Simon Haykin ... [et al.] |
title_full_unstemmed | New directions in statistical signal processing from systems to brain edited by Simon Haykin ... [et al.] |
title_short | New directions in statistical signal processing |
title_sort | new directions in statistical signal processing from systems to brain |
title_sub | from systems to brain |
topic | Neural networks (Neurobiology) Neural networks (Computer science) Signal processing Statistical methods Neural computers |
topic_facet | Neural networks (Neurobiology) Neural networks (Computer science) Signal processing Statistical methods Neural computers |
work_keys_str_mv | AT haykinsimons newdirectionsinstatisticalsignalprocessingfromsystemstobrain |