Sensor data understanding:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Logos Verlag
[2017]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltstext Inhaltsverzeichnis |
Beschreibung: | VI, 227 Seiten Illustrationen, Diagramme |
ISBN: | 9783832546335 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044826620 | ||
003 | DE-604 | ||
005 | 20240216 | ||
007 | t | ||
008 | 180302s2017 gw a||| |||| 00||| eng d | ||
015 | |a 18,N01 |2 dnb | ||
015 | |a 18,A07 |2 dnb | ||
016 | 7 | |a 1149066377 |2 DE-101 | |
020 | |a 9783832546335 |c pbk |9 978-3-8325-4633-5 | ||
024 | 3 | |a 9783832546335 | |
035 | |a (OCoLC)1029103154 | ||
035 | |a (DE-599)DNB1149066377 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29T |a DE-703 |a DE-83 | ||
082 | 0 | |a 006.37 | |
082 | 0 | |a 006.312 | |
084 | |a ZN 6050 |0 (DE-625)157498: |2 rvk | ||
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
084 | |a 610 |2 sdnb | ||
084 | |a 621.3 |2 sdnb | ||
084 | |a 004 |2 sdnb | ||
100 | 1 | |a Grzegorzek, Marcin |d 1977- |e Verfasser |0 (DE-588)133060578 |4 aut | |
245 | 1 | 0 | |a Sensor data understanding |c Marcin Grzegorzek |
264 | 1 | |a Berlin |b Logos Verlag |c [2017] | |
300 | |a VI, 227 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Objektverfolgung |0 (DE-588)4311226-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Aktivität |0 (DE-588)4141766-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Capturing |0 (DE-588)4546178-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Szenenanalyse |0 (DE-588)4435333-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Information Retrieval |0 (DE-588)4072803-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Objekterkennung |0 (DE-588)4314334-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Multimedia |0 (DE-588)4192358-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sensorsystem |0 (DE-588)4307964-7 |2 gnd |9 rswk-swf |
653 | |a Pattern Recognition | ||
653 | |a Machine Learning | ||
653 | |a Sensor Data Interpretation | ||
689 | 0 | 0 | |a Sensorsystem |0 (DE-588)4307964-7 |D s |
689 | 0 | 1 | |a Multimedia |0 (DE-588)4192358-3 |D s |
689 | 0 | 2 | |a Information Retrieval |0 (DE-588)4072803-1 |D s |
689 | 0 | 3 | |a Szenenanalyse |0 (DE-588)4435333-9 |D s |
689 | 0 | 4 | |a Objekterkennung |0 (DE-588)4314334-9 |D s |
689 | 0 | 5 | |a Objektverfolgung |0 (DE-588)4311226-2 |D s |
689 | 0 | 6 | |a Aktivität |0 (DE-588)4141766-5 |D s |
689 | 0 | 7 | |a Capturing |0 (DE-588)4546178-8 |D s |
689 | 0 | 8 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | 9 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Logos Verlag Berlin |0 (DE-588)1065538812 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-8325-9245-5 |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u http://d-nb.info/1149066377/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=0308374b27d64260b88f3ed26593dc72&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030221517&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030221517 | ||
942 | 1 | 1 | |c 006.37 |e 22/bsb |
942 | 1 | 1 | |c 006.312 |e 22/bsb |
Datensatz im Suchindex
_version_ | 1804178323934281728 |
---|---|
adam_text | CONTENTS
PREFACE V
I INTRODUCTION 1
1 FUNDAMENTAL CONCEPT 3
1.1 M O TIV A TIO N
............................................................................
5
1.2 ACTIVE AND ASSISTED L IV IN G
................................................... 6
1.3 DIGITAL M E D ICIN E
..................................................................
9
1.4 OUTLINE AND CONTRIBUTION
................................................... 11
REFERENCES
.....................................................................................
13
II VISUAL SCENE ANALYSIS 17
2 LARGE-SCALE MULTIMEDIA RETRIEVAL 19
2.1 HIERARCHICAL ORGANISATION OF SEMANTIC
MEANINGS...............................................................................
19
2.2 CONCEPT D ETECTION
...............................................................
24
2.2.1 GLOBAL VERSUS LOCAL FEATURES................................... 24
2.2.2 FEATURE
LEARNING...................................................... 28
2.3 EVENT
RETRIEVAL......................................................................
31
2.3.1 EVENT RETRIEVAL WITHIN IM AGES/S HOTS
...................
32
2.3.2 EVENT RETRIEVAL OVER SHOT SEQUENCES
...................
33
2.4 CONCLUSION AND FUTURE T RE N D S
............................................
34
2.4.1 R EASONING
...............................................................
35
2.4.2 UNCERTAINTIES IN CONCEPT D E TE C TIO N
......................
35
2.4.3 ADAPTIVE LEARNING
.
..................................................
36
REFERENCES......................................................................................
39
3 SHAPE-BASED OBJECT RECOGNITION 53
3.1 PROBLEM STATEMENT AND M O TIV A TIO N
...................................
53
3.2 SHAPE REPRESENTATION
.........................................................
54
3.2.1 SURVEY OF RELATED M E TH O D S
...................................
54
3.2.2 COARSE-GRAINED SHAPE REPRESENTATION
...................
57
3.2.3 FINE-GRAINED SHAPE R EPRESENTATION
......................
58
3.3 SHAPE M A TC H IN G
................................................................... 61
3.3.1 SURVEY OF RELATED M E TH O D S
...................................
61
3.3.2 SHAPE MATCHING USING COARSE-GRAINED FEATURES . . 63
3.3.3 SHAPE MATCHING USING FINE-GRAINED FEATURES . . . 64
3.4 EXPERIMENTS AND RESULTS
......................................................
65
3.4.1 SHAPE RETRIEVAL USING COARSE-GRAINED FEATURES . . 65
3.4.2 SHAPE RETRIEVAL USING FINE-GRAINED FEATURES . . . 67
3.5 CONCLUSION AND FUTURE T RE N D
S............................................. 68
REFERENCES......................................................................................
71
4 MOVING OBJECT ANALYSIS FOR VIDEO INTERPRETATION 81
4.1 OBJECT TRACKING IN 2D VIDEO
.............................................. 81
4.1.1 SURVEY OF RELATED APPROACHES........................... 82
4.1.2 TRACKING-LEARNING-DETECTION
..............................
89
4.1.3 TRACKING IN OMNIDIRECTIONAL V IDEO
....................
90
4.1.4 EXPERIMENTS AND RESULTS
....................................
92
4.2 3D TRAJECTORY EXTRACTION FROM 2D V ID E O ..........................
93
4.2.1 RJ-MCMC PARTICLE F ILTE RIN G
..............................
94
4.2.2 CONVOY DETECTION IN CROWDED VIDEO
...............
99
4.2.3 EXPERIMENTS AND RESULTS
......................................
102
4.3 CONCLUSION AND FUTURE T RE N D
S............................................. 104
REFERENCES......................................................................................
106
III HUMAN DATA INTERPRETATION 111
5 PHYSICAL ACTIVITY RECOGNITION 113
5.1 ATOMIC ACTIVITY RECOGNITION
............................................
113
5.1.1 SURVEY OF RELATED APPROACHES
.............................
115
5.1.2 CODEBOOK APPROACH FOR CLASSIFICATION
................
118
5.1.3 EXPERIMENTS AND RESULTS
......................................
124
5.2 GAIT
RECOGNITION...................................................................
129
5.2.1 SURVEY OR RELATED APPROACHES
..............................
130
5.2.2 SPATIOTEMPORAL REPRESENTATION OF G A I T
............
132
5.2.3 EXPERIMENTS AND RESULTS.................................... 135
5.3 CONCLUSION AND FUTURE T RE N D S
.............................................
141
REFERENCES
.....................................................................................
144
6 COGNITIVE ACTIVITY RECOGNITION 157
6.1 DEFINITION, TAXONOMY, IMPACT ON HEALTH
.........................
157
6.2 SENSING THE BRAIN A C TIV ITY
................................................... 158
6.2.1 ELECTROENCEPHALOGRAPHY.................................... 158
6.2.2 ELECTROOCULOGRAPHY
.............................................
159
6.2.3 FUNCTIONAL MAGNETIC RESONANCE IM A G IN G
.........
159
6.2.4 FUNCTIONAL NEAR-INFRARED SPECTROSCOPY.............159
6.3 SURVEY OF RELATED METHODS
...............................................
159
6.4 ELECTROOCULOGRAPHY-BASED APPROACH...................................
161
6.4.1 COGNITIVE ACTIVITY RECOGNITION M E TH O D .............161
6.4.2 INVESTIGATING CODEWORDS.................................... 162
6.5 APPLICATION AND
VALIDATION................................................... 163
6.5.1 COLLECTING A D A TA SE T
..........................................
163
6.5.2 IMPLEMENTATION DETAILS
.........................................
165
6.5.3 RESULTS FOR COGNITIVE ACTIVITY RECOGNITION
.........
165
6.5.4 RESULTS FOR CODEWORDS INVESTIGATION
...................
166
6.6 CONCLUSION AND FUTURE T RE N D S
............................................
167
REFERENCES.....................................................................................
169
7 EMOTION RECOGNITION 173
7.1 AUTOMATIC RECOGNITION OF EM
OTIONS................................... 173
7.1.1 DEFINITION AND TAXONOMY OF EMOTIONS
....................
174
7.1.2 EXISTING TECHNIQUES FOR EMOTION RECOGNITION . . . 180
7.1.3 EMOTION RECOGNITION CHALLENGES
.......................
182
7.2 MULTIMODAL EMOTION R ECOGNITION
......................................
186
7.2.1 AROUSAL/VALENCE E STIM ATION
.............................
186
7.2.2 BASIC EMOTION RECOGNITION ................................... 189
7.3 APPROACHES BASED ON PHYSIOLOGICAL D A T A
.........................
192
7.3.1 STRESS DETECTION USING HAND-CRAFTED FEATURES . . 194
7.3.2 CODEBOOK APPROACH FOR FEATURE GENERATION
.... 196
7.3.3 DEEP NEURAL NETWORKS FOR FEATURE GENERATION . . 199
7.4 CONCLUSION AND FUTURE T RE N D S
................................................
203
REFERENCES
.........................................................................................
204
IV CONCLUSION 211
8 SUMMARY AND FUTURE VISION 213
8.1 VISUAL SCENE ANALYSIS
.............................................................
213
8.2 HUMAN DATA INTERPRETATION
....................................................215
8.3 DATA-DRIVEN S O C IE TY
............................................................
217
REFERENCES..........................................................................................
219
LIST OF FIGURES 223
LIST OF TABLES 227
|
any_adam_object | 1 |
author | Grzegorzek, Marcin 1977- |
author_GND | (DE-588)133060578 |
author_facet | Grzegorzek, Marcin 1977- |
author_role | aut |
author_sort | Grzegorzek, Marcin 1977- |
author_variant | m g mg |
building | Verbundindex |
bvnumber | BV044826620 |
classification_rvk | ZN 6050 ST 330 |
ctrlnum | (OCoLC)1029103154 (DE-599)DNB1149066377 |
dewey-full | 006.37 006.312 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.37 006.312 |
dewey-search | 006.37 006.312 |
dewey-sort | 16.37 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Elektrotechnik / Elektronik / Nachrichtentechnik Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03133nam a2200769 c 4500</leader><controlfield tag="001">BV044826620</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240216 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180302s2017 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">18,N01</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">18,A07</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1149066377</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783832546335</subfield><subfield code="c">pbk</subfield><subfield code="9">978-3-8325-4633-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783832546335</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1029103154</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1149066377</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.37</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.312</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6050</subfield><subfield code="0">(DE-625)157498:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">610</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">621.3</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grzegorzek, Marcin</subfield><subfield code="d">1977-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133060578</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sensor data understanding</subfield><subfield code="c">Marcin Grzegorzek</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Logos Verlag</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 227 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Objektverfolgung</subfield><subfield code="0">(DE-588)4311226-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aktivität</subfield><subfield code="0">(DE-588)4141766-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Capturing</subfield><subfield code="0">(DE-588)4546178-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Szenenanalyse</subfield><subfield code="0">(DE-588)4435333-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Information Retrieval</subfield><subfield code="0">(DE-588)4072803-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Objekterkennung</subfield><subfield code="0">(DE-588)4314334-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multimedia</subfield><subfield code="0">(DE-588)4192358-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensorsystem</subfield><subfield code="0">(DE-588)4307964-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Pattern Recognition</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sensor Data Interpretation</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sensorsystem</subfield><subfield code="0">(DE-588)4307964-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Multimedia</subfield><subfield code="0">(DE-588)4192358-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Information Retrieval</subfield><subfield code="0">(DE-588)4072803-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Szenenanalyse</subfield><subfield code="0">(DE-588)4435333-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Objekterkennung</subfield><subfield code="0">(DE-588)4314334-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Objektverfolgung</subfield><subfield code="0">(DE-588)4311226-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Aktivität</subfield><subfield code="0">(DE-588)4141766-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="7"><subfield code="a">Capturing</subfield><subfield code="0">(DE-588)4546178-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="8"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="9"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Logos Verlag Berlin</subfield><subfield code="0">(DE-588)1065538812</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-8325-9245-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://d-nb.info/1149066377/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=0308374b27d64260b88f3ed26593dc72&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030221517&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030221517</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">006.37</subfield><subfield code="e">22/bsb</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">006.312</subfield><subfield code="e">22/bsb</subfield></datafield></record></collection> |
id | DE-604.BV044826620 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:02:09Z |
institution | BVB |
institution_GND | (DE-588)1065538812 |
isbn | 9783832546335 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030221517 |
oclc_num | 1029103154 |
open_access_boolean | |
owner | DE-29T DE-703 DE-83 |
owner_facet | DE-29T DE-703 DE-83 |
physical | VI, 227 Seiten Illustrationen, Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Logos Verlag |
record_format | marc |
spelling | Grzegorzek, Marcin 1977- Verfasser (DE-588)133060578 aut Sensor data understanding Marcin Grzegorzek Berlin Logos Verlag [2017] VI, 227 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Objektverfolgung (DE-588)4311226-2 gnd rswk-swf Aktivität (DE-588)4141766-5 gnd rswk-swf Capturing (DE-588)4546178-8 gnd rswk-swf Szenenanalyse (DE-588)4435333-9 gnd rswk-swf Information Retrieval (DE-588)4072803-1 gnd rswk-swf Mustererkennung (DE-588)4040936-3 gnd rswk-swf Objekterkennung (DE-588)4314334-9 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Multimedia (DE-588)4192358-3 gnd rswk-swf Sensorsystem (DE-588)4307964-7 gnd rswk-swf Pattern Recognition Machine Learning Sensor Data Interpretation Sensorsystem (DE-588)4307964-7 s Multimedia (DE-588)4192358-3 s Information Retrieval (DE-588)4072803-1 s Szenenanalyse (DE-588)4435333-9 s Objekterkennung (DE-588)4314334-9 s Objektverfolgung (DE-588)4311226-2 s Aktivität (DE-588)4141766-5 s Capturing (DE-588)4546178-8 s Mustererkennung (DE-588)4040936-3 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Logos Verlag Berlin (DE-588)1065538812 pbl Erscheint auch als Online-Ausgabe 978-3-8325-9245-5 B:DE-101 application/pdf http://d-nb.info/1149066377/04 Inhaltsverzeichnis X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=0308374b27d64260b88f3ed26593dc72&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030221517&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Grzegorzek, Marcin 1977- Sensor data understanding Objektverfolgung (DE-588)4311226-2 gnd Aktivität (DE-588)4141766-5 gnd Capturing (DE-588)4546178-8 gnd Szenenanalyse (DE-588)4435333-9 gnd Information Retrieval (DE-588)4072803-1 gnd Mustererkennung (DE-588)4040936-3 gnd Objekterkennung (DE-588)4314334-9 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Multimedia (DE-588)4192358-3 gnd Sensorsystem (DE-588)4307964-7 gnd |
subject_GND | (DE-588)4311226-2 (DE-588)4141766-5 (DE-588)4546178-8 (DE-588)4435333-9 (DE-588)4072803-1 (DE-588)4040936-3 (DE-588)4314334-9 (DE-588)4193754-5 (DE-588)4192358-3 (DE-588)4307964-7 |
title | Sensor data understanding |
title_auth | Sensor data understanding |
title_exact_search | Sensor data understanding |
title_full | Sensor data understanding Marcin Grzegorzek |
title_fullStr | Sensor data understanding Marcin Grzegorzek |
title_full_unstemmed | Sensor data understanding Marcin Grzegorzek |
title_short | Sensor data understanding |
title_sort | sensor data understanding |
topic | Objektverfolgung (DE-588)4311226-2 gnd Aktivität (DE-588)4141766-5 gnd Capturing (DE-588)4546178-8 gnd Szenenanalyse (DE-588)4435333-9 gnd Information Retrieval (DE-588)4072803-1 gnd Mustererkennung (DE-588)4040936-3 gnd Objekterkennung (DE-588)4314334-9 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Multimedia (DE-588)4192358-3 gnd Sensorsystem (DE-588)4307964-7 gnd |
topic_facet | Objektverfolgung Aktivität Capturing Szenenanalyse Information Retrieval Mustererkennung Objekterkennung Maschinelles Lernen Multimedia Sensorsystem |
url | http://d-nb.info/1149066377/04 http://deposit.dnb.de/cgi-bin/dokserv?id=0308374b27d64260b88f3ed26593dc72&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030221517&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT grzegorzekmarcin sensordataunderstanding AT logosverlagberlin sensordataunderstanding |
Es ist kein Print-Exemplar vorhanden.
Beschreibung