Ensemble methods in data mining: improving accuracy through combining predictions
1. Ensembles discovered -- Building ensembles -- Regularization -- Real-world examples: credit scoring + the Netflix challenge -- Organization of this book --
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[San Rafael, California]
Morgan & Claypool Publishers
[2010]
|
Schriftenreihe: | Synthesis lectures on data mining and knowledge discovery
#2 |
Schlagworte: | |
Online-Zugang: | UER01 Volltext |
Zusammenfassung: | 1. Ensembles discovered -- Building ensembles -- Regularization -- Real-world examples: credit scoring + the Netflix challenge -- Organization of this book -- 2. Predictive learning and decision trees -- Decision tree induction overview -- Decision tree properties -- Decision tree limitations -- 3. Model complexity, model selection and regularization -- What is the "right" size of a tree -- Bias-variance decomposition -- Regularization -- Regularization and cost-complexity tree pruning -- Cross-validation -- Regularization via shrinkage -- Regularization via incremental model building -- Example -- Regularization summary -- |
Beschreibung: | 1 Online-Ressource (xvi, 108 Seiten) |
ISBN: | 9781608452859 |
DOI: | 10.2200/S00240ED1V01Y200912DMK002 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV044754832 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180209s2010 |||| o||u| ||||||eng d | ||
020 | |a 9781608452859 |c ebook |9 978-1-60845-285-9 | ||
024 | 7 | |a 10.2200/S00240ED1V01Y200912DMK002 |2 doi | |
035 | |a (OCoLC)1024132938 | ||
035 | |a (DE-599)BVBBV040094225 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 | ||
100 | 1 | |a Seni, Giovanni |e Verfasser |0 (DE-588)1036432947 |4 aut | |
245 | 1 | 0 | |a Ensemble methods in data mining |b improving accuracy through combining predictions |c Giovanni Seni (Elder Research, Inc. and Santa Clara University), John F. Elder (Elder Research, Inc. and University of Virginia) |
264 | 1 | |a [San Rafael, California] |b Morgan & Claypool Publishers |c [2010] | |
264 | 4 | |c © 2010 | |
300 | |a 1 Online-Ressource (xvi, 108 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Synthesis lectures on data mining and knowledge discovery |v #2 | |
505 | 8 | |a Acknowledgments; Foreword by Jaffray Woodriff; Foreword by Tin Kam Ho; Ensembles Discovered; Building Ensembles; Regularization; Real-World Examples: Credit Scoring + the Netflix Challenge; Organization of This Book; Predictive Learning and Decision Trees; Decision Tree Induction Overview; Decision Tree Properties; Decision Tree Limitations; Model Complexity, Model Selection and Regularization; What is the ''Right'' Size of a Tree?; Bias-Variance Decomposition; Regularization; Regularization and Cost-Complexity Tree Pruning; Cross-Validation; Regularization via Shrinkage | |
505 | 8 | |a Regularization via Incremental Model BuildingExample; Regularization Summary; Importance Sampling and the Classic Ensemble Methods; Importance Sampling; Parameter Importance Measure; Perturbation Sampling; Generic Ensemble Generation; Bagging; Example; Why it Helps?; Random Forest; AdaBoost; Example; Why the Exponential Loss?; AdaBoost's Population Minimizer; Gradient Boosting; MART; Parallel vs. Sequential Ensembles; Rule Ensembles and Interpretation Statistics; Rule Ensembles; Interpretation; Simulated Data Example; Variable Importance; Partial Dependences; Interaction Statistic | |
505 | 8 | |a Manufacturing Data ExampleSummary; Ensemble Complexity; Complexity; Generalized Degrees of Freedom; Examples: Decision Tree Surface with Noise; R Code for GDF and Example; Summary and Discussion; AdaBoost Equivalence to FSF Procedure; Gradient Boosting and Robust Loss Functions; Bibliography; Authors' Biographies; | |
520 | 3 | |a 1. Ensembles discovered -- Building ensembles -- Regularization -- Real-world examples: credit scoring + the Netflix challenge -- Organization of this book -- | |
520 | 3 | |a 2. Predictive learning and decision trees -- Decision tree induction overview -- Decision tree properties -- Decision tree limitations -- | |
520 | 3 | |a 3. Model complexity, model selection and regularization -- What is the "right" size of a tree -- Bias-variance decomposition -- Regularization -- Regularization and cost-complexity tree pruning -- Cross-validation -- Regularization via shrinkage -- Regularization via incremental model building -- Example -- Regularization summary -- | |
653 | |a Data mining | ||
653 | 6 | |a Electronic books | |
700 | 1 | |a Elder, John F. |d 1961- |e Verfasser |0 (DE-588)140491279 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-60845-284-2 |
830 | 0 | |a Synthesis lectures on data mining and knowledge discovery |v #2 |w (DE-604)BV044754814 |9 2 | |
856 | 4 | 0 | |u https://doi.org/10.2200/S00240ED1V01Y200912DMK002 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-38-EBR |a ZDB-105-MCB |a ZDB-4-NLEBK |a ZDB-30-PQE |a ZDB-105-MCS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030150391 | ||
966 | e | |u https://doi.org/10.2200/S00240ED1V01Y200912DMK002 |l UER01 |p ZDB-105-MCB |q UER_Einzelkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178270509334528 |
---|---|
any_adam_object | |
author | Seni, Giovanni Elder, John F. 1961- |
author_GND | (DE-588)1036432947 (DE-588)140491279 |
author_facet | Seni, Giovanni Elder, John F. 1961- |
author_role | aut aut |
author_sort | Seni, Giovanni |
author_variant | g s gs j f e jf jfe |
building | Verbundindex |
bvnumber | BV044754832 |
collection | ZDB-38-EBR ZDB-105-MCB ZDB-4-NLEBK ZDB-30-PQE ZDB-105-MCS |
contents | Acknowledgments; Foreword by Jaffray Woodriff; Foreword by Tin Kam Ho; Ensembles Discovered; Building Ensembles; Regularization; Real-World Examples: Credit Scoring + the Netflix Challenge; Organization of This Book; Predictive Learning and Decision Trees; Decision Tree Induction Overview; Decision Tree Properties; Decision Tree Limitations; Model Complexity, Model Selection and Regularization; What is the ''Right'' Size of a Tree?; Bias-Variance Decomposition; Regularization; Regularization and Cost-Complexity Tree Pruning; Cross-Validation; Regularization via Shrinkage Regularization via Incremental Model BuildingExample; Regularization Summary; Importance Sampling and the Classic Ensemble Methods; Importance Sampling; Parameter Importance Measure; Perturbation Sampling; Generic Ensemble Generation; Bagging; Example; Why it Helps?; Random Forest; AdaBoost; Example; Why the Exponential Loss?; AdaBoost's Population Minimizer; Gradient Boosting; MART; Parallel vs. Sequential Ensembles; Rule Ensembles and Interpretation Statistics; Rule Ensembles; Interpretation; Simulated Data Example; Variable Importance; Partial Dependences; Interaction Statistic Manufacturing Data ExampleSummary; Ensemble Complexity; Complexity; Generalized Degrees of Freedom; Examples: Decision Tree Surface with Noise; R Code for GDF and Example; Summary and Discussion; AdaBoost Equivalence to FSF Procedure; Gradient Boosting and Robust Loss Functions; Bibliography; Authors' Biographies; |
ctrlnum | (OCoLC)1024132938 (DE-599)BVBBV040094225 |
doi_str_mv | 10.2200/S00240ED1V01Y200912DMK002 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03950nmm a2200457 cb4500</leader><controlfield tag="001">BV044754832</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180209s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781608452859</subfield><subfield code="c">ebook</subfield><subfield code="9">978-1-60845-285-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2200/S00240ED1V01Y200912DMK002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1024132938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040094225</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Seni, Giovanni</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1036432947</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ensemble methods in data mining</subfield><subfield code="b">improving accuracy through combining predictions</subfield><subfield code="c">Giovanni Seni (Elder Research, Inc. and Santa Clara University), John F. Elder (Elder Research, Inc. and University of Virginia)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[San Rafael, California]</subfield><subfield code="b">Morgan & Claypool Publishers</subfield><subfield code="c">[2010]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 108 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Synthesis lectures on data mining and knowledge discovery</subfield><subfield code="v">#2</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Acknowledgments; Foreword by Jaffray Woodriff; Foreword by Tin Kam Ho; Ensembles Discovered; Building Ensembles; Regularization; Real-World Examples: Credit Scoring + the Netflix Challenge; Organization of This Book; Predictive Learning and Decision Trees; Decision Tree Induction Overview; Decision Tree Properties; Decision Tree Limitations; Model Complexity, Model Selection and Regularization; What is the ''Right'' Size of a Tree?; Bias-Variance Decomposition; Regularization; Regularization and Cost-Complexity Tree Pruning; Cross-Validation; Regularization via Shrinkage</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Regularization via Incremental Model BuildingExample; Regularization Summary; Importance Sampling and the Classic Ensemble Methods; Importance Sampling; Parameter Importance Measure; Perturbation Sampling; Generic Ensemble Generation; Bagging; Example; Why it Helps?; Random Forest; AdaBoost; Example; Why the Exponential Loss?; AdaBoost's Population Minimizer; Gradient Boosting; MART; Parallel vs. Sequential Ensembles; Rule Ensembles and Interpretation Statistics; Rule Ensembles; Interpretation; Simulated Data Example; Variable Importance; Partial Dependences; Interaction Statistic</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Manufacturing Data ExampleSummary; Ensemble Complexity; Complexity; Generalized Degrees of Freedom; Examples: Decision Tree Surface with Noise; R Code for GDF and Example; Summary and Discussion; AdaBoost Equivalence to FSF Procedure; Gradient Boosting and Robust Loss Functions; Bibliography; Authors' Biographies;</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">1. Ensembles discovered -- Building ensembles -- Regularization -- Real-world examples: credit scoring + the Netflix challenge -- Organization of this book --</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">2. Predictive learning and decision trees -- Decision tree induction overview -- Decision tree properties -- Decision tree limitations --</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">3. Model complexity, model selection and regularization -- What is the "right" size of a tree -- Bias-variance decomposition -- Regularization -- Regularization and cost-complexity tree pruning -- Cross-validation -- Regularization via shrinkage -- Regularization via incremental model building -- Example -- Regularization summary --</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data mining</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elder, John F.</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140491279</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-60845-284-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Synthesis lectures on data mining and knowledge discovery</subfield><subfield code="v">#2</subfield><subfield code="w">(DE-604)BV044754814</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2200/S00240ED1V01Y200912DMK002</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-38-EBR</subfield><subfield code="a">ZDB-105-MCB</subfield><subfield code="a">ZDB-4-NLEBK</subfield><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-105-MCS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030150391</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.2200/S00240ED1V01Y200912DMK002</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-105-MCB</subfield><subfield code="q">UER_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044754832 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:01:18Z |
institution | BVB |
isbn | 9781608452859 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030150391 |
oclc_num | 1024132938 |
open_access_boolean | |
owner | DE-29 |
owner_facet | DE-29 |
physical | 1 Online-Ressource (xvi, 108 Seiten) |
psigel | ZDB-38-EBR ZDB-105-MCB ZDB-4-NLEBK ZDB-30-PQE ZDB-105-MCS ZDB-105-MCB UER_Einzelkauf |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Morgan & Claypool Publishers |
record_format | marc |
series | Synthesis lectures on data mining and knowledge discovery |
series2 | Synthesis lectures on data mining and knowledge discovery |
spelling | Seni, Giovanni Verfasser (DE-588)1036432947 aut Ensemble methods in data mining improving accuracy through combining predictions Giovanni Seni (Elder Research, Inc. and Santa Clara University), John F. Elder (Elder Research, Inc. and University of Virginia) [San Rafael, California] Morgan & Claypool Publishers [2010] © 2010 1 Online-Ressource (xvi, 108 Seiten) txt rdacontent c rdamedia cr rdacarrier Synthesis lectures on data mining and knowledge discovery #2 Acknowledgments; Foreword by Jaffray Woodriff; Foreword by Tin Kam Ho; Ensembles Discovered; Building Ensembles; Regularization; Real-World Examples: Credit Scoring + the Netflix Challenge; Organization of This Book; Predictive Learning and Decision Trees; Decision Tree Induction Overview; Decision Tree Properties; Decision Tree Limitations; Model Complexity, Model Selection and Regularization; What is the ''Right'' Size of a Tree?; Bias-Variance Decomposition; Regularization; Regularization and Cost-Complexity Tree Pruning; Cross-Validation; Regularization via Shrinkage Regularization via Incremental Model BuildingExample; Regularization Summary; Importance Sampling and the Classic Ensemble Methods; Importance Sampling; Parameter Importance Measure; Perturbation Sampling; Generic Ensemble Generation; Bagging; Example; Why it Helps?; Random Forest; AdaBoost; Example; Why the Exponential Loss?; AdaBoost's Population Minimizer; Gradient Boosting; MART; Parallel vs. Sequential Ensembles; Rule Ensembles and Interpretation Statistics; Rule Ensembles; Interpretation; Simulated Data Example; Variable Importance; Partial Dependences; Interaction Statistic Manufacturing Data ExampleSummary; Ensemble Complexity; Complexity; Generalized Degrees of Freedom; Examples: Decision Tree Surface with Noise; R Code for GDF and Example; Summary and Discussion; AdaBoost Equivalence to FSF Procedure; Gradient Boosting and Robust Loss Functions; Bibliography; Authors' Biographies; 1. Ensembles discovered -- Building ensembles -- Regularization -- Real-world examples: credit scoring + the Netflix challenge -- Organization of this book -- 2. Predictive learning and decision trees -- Decision tree induction overview -- Decision tree properties -- Decision tree limitations -- 3. Model complexity, model selection and regularization -- What is the "right" size of a tree -- Bias-variance decomposition -- Regularization -- Regularization and cost-complexity tree pruning -- Cross-validation -- Regularization via shrinkage -- Regularization via incremental model building -- Example -- Regularization summary -- Data mining Electronic books Elder, John F. 1961- Verfasser (DE-588)140491279 aut Erscheint auch als Druck-Ausgabe, Paperback 978-1-60845-284-2 Synthesis lectures on data mining and knowledge discovery #2 (DE-604)BV044754814 2 https://doi.org/10.2200/S00240ED1V01Y200912DMK002 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Seni, Giovanni Elder, John F. 1961- Ensemble methods in data mining improving accuracy through combining predictions Synthesis lectures on data mining and knowledge discovery Acknowledgments; Foreword by Jaffray Woodriff; Foreword by Tin Kam Ho; Ensembles Discovered; Building Ensembles; Regularization; Real-World Examples: Credit Scoring + the Netflix Challenge; Organization of This Book; Predictive Learning and Decision Trees; Decision Tree Induction Overview; Decision Tree Properties; Decision Tree Limitations; Model Complexity, Model Selection and Regularization; What is the ''Right'' Size of a Tree?; Bias-Variance Decomposition; Regularization; Regularization and Cost-Complexity Tree Pruning; Cross-Validation; Regularization via Shrinkage Regularization via Incremental Model BuildingExample; Regularization Summary; Importance Sampling and the Classic Ensemble Methods; Importance Sampling; Parameter Importance Measure; Perturbation Sampling; Generic Ensemble Generation; Bagging; Example; Why it Helps?; Random Forest; AdaBoost; Example; Why the Exponential Loss?; AdaBoost's Population Minimizer; Gradient Boosting; MART; Parallel vs. Sequential Ensembles; Rule Ensembles and Interpretation Statistics; Rule Ensembles; Interpretation; Simulated Data Example; Variable Importance; Partial Dependences; Interaction Statistic Manufacturing Data ExampleSummary; Ensemble Complexity; Complexity; Generalized Degrees of Freedom; Examples: Decision Tree Surface with Noise; R Code for GDF and Example; Summary and Discussion; AdaBoost Equivalence to FSF Procedure; Gradient Boosting and Robust Loss Functions; Bibliography; Authors' Biographies; |
title | Ensemble methods in data mining improving accuracy through combining predictions |
title_auth | Ensemble methods in data mining improving accuracy through combining predictions |
title_exact_search | Ensemble methods in data mining improving accuracy through combining predictions |
title_full | Ensemble methods in data mining improving accuracy through combining predictions Giovanni Seni (Elder Research, Inc. and Santa Clara University), John F. Elder (Elder Research, Inc. and University of Virginia) |
title_fullStr | Ensemble methods in data mining improving accuracy through combining predictions Giovanni Seni (Elder Research, Inc. and Santa Clara University), John F. Elder (Elder Research, Inc. and University of Virginia) |
title_full_unstemmed | Ensemble methods in data mining improving accuracy through combining predictions Giovanni Seni (Elder Research, Inc. and Santa Clara University), John F. Elder (Elder Research, Inc. and University of Virginia) |
title_short | Ensemble methods in data mining |
title_sort | ensemble methods in data mining improving accuracy through combining predictions |
title_sub | improving accuracy through combining predictions |
url | https://doi.org/10.2200/S00240ED1V01Y200912DMK002 |
volume_link | (DE-604)BV044754814 |
work_keys_str_mv | AT senigiovanni ensemblemethodsindataminingimprovingaccuracythroughcombiningpredictions AT elderjohnf ensemblemethodsindataminingimprovingaccuracythroughcombiningpredictions |