Complex analysis: a functional analytic approach
In this textbook, a concise approach to complex analysis of one and several variables is presented. After an introduction of Cauchy‘s integral theorem general versions of Runge‘s approximation theorem and Mittag-Leffler‘s theorem are discussed. The fi rst part ends with an analytic characterization...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2018]
|
Schriftenreihe: | De Gruyter Textbook
|
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FHA01 FHI01 FHR01 FKE01 FLA01 UBW01 UBY01 UPA01 FCO01 URL des Erstveröffentlichers |
Zusammenfassung: | In this textbook, a concise approach to complex analysis of one and several variables is presented. After an introduction of Cauchy‘s integral theorem general versions of Runge‘s approximation theorem and Mittag-Leffler‘s theorem are discussed. The fi rst part ends with an analytic characterization of simply connected domains. The second part is concerned with functional analytic methods: Fréchet and Hilbert spaces of holomorphic functions, the Bergman kernel, and unbounded operators on Hilbert spaces to tackle the theory of several variables, in particular the inhomogeneous Cauchy-Riemann equations and the d-bar Neumann operator. ContentsComplex numbers and functionsCauchy’s Theorem and Cauchy’s formulaAnalytic continuationConstruction and approximation of holomorphic functionsHarmonic functionsSeveral complex variablesBergman spacesThe canonical solution operator to Nuclear Fréchet spaces of holomorphic functionsThe -complexThe twisted -complex and Schrödinger operators |
Beschreibung: | 1 Online-Ressource (X, 338 Seiten) 30 Illustrationen |
ISBN: | 9783110417241 |
DOI: | 10.1515/9783110417241 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044744228 | ||
003 | DE-604 | ||
005 | 20200629 | ||
007 | cr|uuu---uuuuu | ||
008 | 180202s2018 |||| o||u| ||||||eng d | ||
020 | |a 9783110417241 |9 978-3-11-041724-1 | ||
024 | 7 | |a 10.1515/9783110417241 |2 doi | |
024 | 3 | |a 9783110417234 | |
035 | |a (ZDB-23-DGG)9783110417241 | ||
035 | |a (OCoLC)1017054099 | ||
035 | |a (DE-599)BVBBV044744228 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-739 |a DE-706 |a DE-1046 |a DE-20 |a DE-898 |a DE-573 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 510 |2 23 | |
082 | 0 | |a 515.9 |2 23 | |
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Haslinger, Friedrich |e Verfasser |0 (DE-588)1053550928 |4 aut | |
245 | 1 | 0 | |a Complex analysis |b a functional analytic approach |c Friedrich Haslinger |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a 1 Online-Ressource (X, 338 Seiten) |b 30 Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter Textbook | |
520 | |a In this textbook, a concise approach to complex analysis of one and several variables is presented. After an introduction of Cauchy‘s integral theorem general versions of Runge‘s approximation theorem and Mittag-Leffler‘s theorem are discussed. The fi rst part ends with an analytic characterization of simply connected domains. The second part is concerned with functional analytic methods: Fréchet and Hilbert spaces of holomorphic functions, the Bergman kernel, and unbounded operators on Hilbert spaces to tackle the theory of several variables, in particular the inhomogeneous Cauchy-Riemann equations and the d-bar Neumann operator. ContentsComplex numbers and functionsCauchy’s Theorem and Cauchy’s formulaAnalytic continuationConstruction and approximation of holomorphic functionsHarmonic functionsSeveral complex variablesBergman spacesThe canonical solution operator to Nuclear Fréchet spaces of holomorphic functionsThe -complexThe twisted -complex and Schrödinger operators | ||
546 | |a In English | ||
650 | 4 | |a analytic continuation | |
650 | 4 | |a Bergman kernel | |
650 | 4 | |a Cauchy integral theorem | |
650 | 4 | |a Complex analysis | |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-041723-4 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110417241 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA |a ZDB-23-DEI | ||
940 | 1 | |q ZDB-23-DEI17 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030140014 | ||
966 | e | |u https://doi.org/10.1515/9783110417241 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110417241 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110417241 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110417241 |l FHI01 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110417241 |l FHR01 |p ZDB-23-DEI |q ZDB-23-DEI17 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110417241 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110417241 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110417241 |l UBW01 |p ZDB-23-DMA |q ZDB-23-DMA17 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110417241 |l UBY01 |p ZDB-23-DMA |q UBY_Paketkauf17 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110417241 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110417241 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178251235459072 |
---|---|
any_adam_object | |
author | Haslinger, Friedrich |
author_GND | (DE-588)1053550928 |
author_facet | Haslinger, Friedrich |
author_role | aut |
author_sort | Haslinger, Friedrich |
author_variant | f h fh |
building | Verbundindex |
bvnumber | BV044744228 |
classification_rvk | SK 700 |
collection | ZDB-23-DGG ZDB-23-DMA ZDB-23-DEI |
ctrlnum | (ZDB-23-DGG)9783110417241 (OCoLC)1017054099 (DE-599)BVBBV044744228 |
dewey-full | 510 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics 515 - Analysis |
dewey-raw | 510 515.9 |
dewey-search | 510 515.9 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110417241 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03954nmm a2200661zc 4500</leader><controlfield tag="001">BV044744228</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200629 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180202s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110417241</subfield><subfield code="9">978-3-11-041724-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110417241</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110417234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110417241</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1017054099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044744228</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haslinger, Friedrich</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1053550928</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex analysis</subfield><subfield code="b">a functional analytic approach</subfield><subfield code="c">Friedrich Haslinger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 338 Seiten)</subfield><subfield code="b">30 Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter Textbook</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this textbook, a concise approach to complex analysis of one and several variables is presented. After an introduction of Cauchy‘s integral theorem general versions of Runge‘s approximation theorem and Mittag-Leffler‘s theorem are discussed. The fi rst part ends with an analytic characterization of simply connected domains. The second part is concerned with functional analytic methods: Fréchet and Hilbert spaces of holomorphic functions, the Bergman kernel, and unbounded operators on Hilbert spaces to tackle the theory of several variables, in particular the inhomogeneous Cauchy-Riemann equations and the d-bar Neumann operator. ContentsComplex numbers and functionsCauchy’s Theorem and Cauchy’s formulaAnalytic continuationConstruction and approximation of holomorphic functionsHarmonic functionsSeveral complex variablesBergman spacesThe canonical solution operator to Nuclear Fréchet spaces of holomorphic functionsThe -complexThe twisted -complex and Schrödinger operators</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analytic continuation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bergman kernel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cauchy integral theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-041723-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110417241</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield><subfield code="a">ZDB-23-DEI</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DEI17</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030140014</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110417241</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110417241</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110417241</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110417241</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110417241</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="q">ZDB-23-DEI17</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110417241</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110417241</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110417241</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA17</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110417241</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">UBY_Paketkauf17</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110417241</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110417241</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044744228 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:01:00Z |
institution | BVB |
isbn | 9783110417241 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030140014 |
oclc_num | 1017054099 |
open_access_boolean | |
owner | DE-Aug4 DE-859 DE-860 DE-739 DE-739 DE-706 DE-1046 DE-20 DE-898 DE-BY-UBR DE-573 DE-1043 DE-858 |
owner_facet | DE-Aug4 DE-859 DE-860 DE-739 DE-739 DE-706 DE-1046 DE-20 DE-898 DE-BY-UBR DE-573 DE-1043 DE-858 |
physical | 1 Online-Ressource (X, 338 Seiten) 30 Illustrationen |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DEI ZDB-23-DEI17 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DEI ZDB-23-DEI17 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA ZDB-23-DMA17 ZDB-23-DMA UBY_Paketkauf17 ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter Textbook |
spelling | Haslinger, Friedrich Verfasser (DE-588)1053550928 aut Complex analysis a functional analytic approach Friedrich Haslinger Berlin ; Boston De Gruyter [2018] © 2018 1 Online-Ressource (X, 338 Seiten) 30 Illustrationen txt rdacontent c rdamedia cr rdacarrier De Gruyter Textbook In this textbook, a concise approach to complex analysis of one and several variables is presented. After an introduction of Cauchy‘s integral theorem general versions of Runge‘s approximation theorem and Mittag-Leffler‘s theorem are discussed. The fi rst part ends with an analytic characterization of simply connected domains. The second part is concerned with functional analytic methods: Fréchet and Hilbert spaces of holomorphic functions, the Bergman kernel, and unbounded operators on Hilbert spaces to tackle the theory of several variables, in particular the inhomogeneous Cauchy-Riemann equations and the d-bar Neumann operator. ContentsComplex numbers and functionsCauchy’s Theorem and Cauchy’s formulaAnalytic continuationConstruction and approximation of holomorphic functionsHarmonic functionsSeveral complex variablesBergman spacesThe canonical solution operator to Nuclear Fréchet spaces of holomorphic functionsThe -complexThe twisted -complex and Schrödinger operators In English analytic continuation Bergman kernel Cauchy integral theorem Complex analysis Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 s DE-604 Erscheint auch als Druck-Ausgabe 978-3-11-041723-4 https://doi.org/10.1515/9783110417241 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Haslinger, Friedrich Complex analysis a functional analytic approach analytic continuation Bergman kernel Cauchy integral theorem Complex analysis Funktionentheorie (DE-588)4018935-1 gnd |
subject_GND | (DE-588)4018935-1 |
title | Complex analysis a functional analytic approach |
title_auth | Complex analysis a functional analytic approach |
title_exact_search | Complex analysis a functional analytic approach |
title_full | Complex analysis a functional analytic approach Friedrich Haslinger |
title_fullStr | Complex analysis a functional analytic approach Friedrich Haslinger |
title_full_unstemmed | Complex analysis a functional analytic approach Friedrich Haslinger |
title_short | Complex analysis |
title_sort | complex analysis a functional analytic approach |
title_sub | a functional analytic approach |
topic | analytic continuation Bergman kernel Cauchy integral theorem Complex analysis Funktionentheorie (DE-588)4018935-1 gnd |
topic_facet | analytic continuation Bergman kernel Cauchy integral theorem Complex analysis Funktionentheorie |
url | https://doi.org/10.1515/9783110417241 |
work_keys_str_mv | AT haslingerfriedrich complexanalysisafunctionalanalyticapproach |