Deep learning with R:
Introduces deep learning systems using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Shelter Island, NY
Manning
[2018]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | Introduces deep learning systems using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | xxi, 335 Seiten Illustrationen, Diagramme 24 cm |
ISBN: | 9781617295546 161729554X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044743224 | ||
003 | DE-604 | ||
005 | 20210504 | ||
007 | t | ||
008 | 180202s2018 a||| |||| 00||| eng d | ||
020 | |a 9781617295546 |c pbk |9 978-1-61729-554-6 | ||
020 | |a 161729554X |9 1-61729-554-X | ||
035 | |a (OCoLC)1027009658 | ||
035 | |a (DE-599)BVBBV044743224 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-83 |a DE-945 |a DE-739 |a DE-863 |a DE-355 |a DE-11 |a DE-384 |a DE-19 |a DE-703 |a DE-521 | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
084 | |a 54.72 |2 bkl | ||
084 | |a 68T05 |2 msc | ||
084 | |a 54.51 |2 bkl | ||
100 | 1 | |a Chollet, François |0 (DE-588)1151332550 |4 aut | |
245 | 1 | 0 | |a Deep learning with R |c François Chollet, with J.J. Allaire |
264 | 1 | |a Shelter Island, NY |b Manning |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a xxi, 335 Seiten |b Illustrationen, Diagramme |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
520 | 3 | |a Introduces deep learning systems using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples | |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Text Mining |0 (DE-588)4728093-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 3 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |D s |
689 | 0 | 4 | |a Text Mining |0 (DE-588)4728093-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 1 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 1 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 2 | 1 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 2 | 2 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
700 | 1 | |a Allaire, J. J. |d 1969- |0 (DE-588)1169258654 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |w (DE-604)BV045143765 |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030139017&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030139017 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
DE-BY-863_location | 1000 |
---|---|
DE-BY-FWS_call_number | 1000/ST 302 R01 C5 |
DE-BY-FWS_katkey | 699212 |
DE-BY-FWS_media_number | 083101412192 |
_version_ | 1806174029283852288 |
adam_text | Fart 1
Part 2
brief contents
Fundamentals of deep learning...............................1
1 “ What is deep learning? 3
2 n Before we begin: the mathematical building blocks
of neural networks 24
3 * Getting started with neural networks 50
4 n Fundamentals of machine learning 84
Deep learning in practice.................................109
5 “ Deep learning for computer vision 111
6 ° Deep learning for text and sequences 164
7 n Advanced deep-learning best practices 218
8 “ Generative deep learning 250
9 a Conclusions 293
contents
preface xiii
acknowledgments xv
about this book xvi
about the authors xx
about the cover xxi
Part 1 Fundamentals of deep learning....... 1
i
What is deep learning? 3
1.1 Artificial intelligence, machine learning,
and deep learning 4
Artificial intelligence 4 ■ Machine learning 4 ■ Learning
representations from data 6 ■ The “deep in deep learning 8
Understanding how deep learning works, in three figures 9
What deep learning has achieved so far 11 ■ Don’t believe the
short-term hype 12 ■ The promise of AI 12
1.2 Before deep learning: a brief history
of machine learning 13
Probabilistic modeling 14 ■ Early neural networks 14
Kernel methods 15 • Decision trees, random forests, and gradient
boosting machines 16 ■ Back to neural networks 17 9 What
makes deep learning different 17 9 The modem machine-learning
landscape 18
Ml
CONTENTS
1.3 Why deep learning? Why now? 19
Hardware 19 ■ Data 20 ■ Algorithms 21 ■ A new wave of
investment 21 ■ The democratization of deep learning 22
Will it last ? 22
Before we begin: the mathematical building
blocks of neural networks 24
2.1 A first look at a neural network 25
2.2 Data representations for neural networks 29
Scalars (OD tensors) 29 ■ Vectors (ID tensors) 29 ■ Matrices
(2D tensors) 30 ■ 3D tensors and higher-dimensional tensors 30
Key attributes 30 ■ Manipulating tensors in R 31 ■ The notion
of data batches 32 ■ Real-world examples of data tensors 32
Vector data 32 ■ Timeseries data or sequence data 33
Image data 33 ■ Video data 34
2.3 The gears of neural networks: tensor operations 34
Element-wise operations 35 ■ Operations involving tensors of
different dimensions 36 ■ Tensor dot 36 ■ Tensor
reshaping 38 ■ Geometric interpretation of tensor operations 39
A geometric interpretation of deep learning 40
2.4 The engine of neural networks:
gradient-based optimization 41
WhaVs a derivative ? 42 ■ Derivative of a tensor operation: the
gradient 43 ■ Stochastic gradient descent 44 ■ Chaining
derivatives: the Backpropagation algorithm 46
2.5 Looking back at our first example 47
2.6 Summary 49
Getting started with neural networks 50
3.1 Anatomy of a neural network 51
Layers: the building blocks of deep learning 52 ■ Models: networks
of layers 52 ■ Loss functions and optimizers: keys to configuring
the learning process 53
3.2 Introduction to Keras 54
Keras, TensorFlow, Theano, and CNTK 54 ■ Installing
Keras 56 ■ Developing with Keras: a quick overview 56
3.3 Setting up a deep-learning workstation 57
Getting Keras running: two options 58 ■ Running deep-learning
jobs in the cloud: pros and cons 58 ■ What is the best GPU for deep
learning? 59
CONTENTS
IX
3.4 Classifying movie reviews:
a binary classification example 59
The IMDB dataset 59 • Preparing the data 61 ■ Building
your network 62 ■ Validating your approach 65 ■ Using a
trained network to generate predictions on new data 68 ■ Further
experiments 69 ■ Wrapping up 69
3.5 Classifying newswires: a multiclass classification
example 70
The Reuters dataset 70 ■ Preparing the data 71
Building your network 72 ■ Validating your approach 73 *
Generating predictions on new data 74 ■ A different way to handle
the labels and the loss 75 ■ The importance of having sufficiently
large intermediate layers 75 ■ Further
experiments 76 ■ Wrapping up 76
3.6 Predicting house prices: a regression example 76
The Boston Housing Price dataset 77 ■ Preparing the data 77
Building your network 78 ■ Validating your approach using
K-fold validation 79 ■ Wrapping up 83
3.7 Summary 83
Fundamentals of machine learning 84
4.1 Four branches of machine learning 85
Supervised learning 85 ■ Unsupervised learning 85
Self-supervised learning 86 • Reinforcement learning 86
4.2 Evaluating machine-learning models 87
Training, validation, and test sets 88 ■ Things to keep
in mind 91
4.3 Data preprocessing, feature engineering,
and feature learning 91
Data preprocessing for neural networks 91 ■ Feature
engineering 93
4.4 Overfitting and underfitting 94
Reducing the network s size 95 ■ Adding weight
regularization 98 ■ Adding dropout 100
4.5 The universal workflow of machine learning 102
Defining the problem and assembling a dataset 102 • Choosing
a measure of success 103 ■ Deciding on an evaluation
protocol 104 ■ Preparing your data 104
X
CONTENTS
Developing a model that does better than a baseline 104
Scaling up: developing a model that overfits 105
Regularizing your model and tuning your hyperparameters 106
4.6 Summary 107
Part 2
Deep learning in practice
I
Deep learning for computer vision 111
5.1 Introduction to convnets 111
The convolution operation 114 ■ The max-pooling
operation 119
5.2 Training a convnet from scratch on a small dataset 121
The relevance of deep learning for small-data problems 121
Downloading the data 122 ■ Building your network 124
Data preprocessing 126 ■ Using data augmentation 128
5.3 Using a pretrained convnet 132
Feature extraction 133 ■ Fine-tuning 142
Wrapping up 146
5.4 Visualizing what convnets learn 146
Visualizing intermediate activations 146 ■ Visualizing convnet
filters 153 ■ Visualizing heatmaps of class activation 159
5.5 Summary 163
Deep learning for text and sequences 164
6.1 Working with text data 165
One-hot encoding of words and characters 166 ■ Using word
embeddings 169 ■ Putting it all together: from raw text to word
embeddings 174 ■ Wrapping up 180
6.2 Understanding recurrent neural networks 180
A recurrent layer in Kerns 182 ■ Understanding the LSTM and
GRU layers 186 * A concrete LSTM example in Keras 188
Wrapping up 190
6.3 Advanced use of recurrent neural networks 190
A temperature-forecasting problem 191 ■ Preparing the data 193
A common-sense, non-machine-leaming baseline 197 ■ A basic
machine-learning approach 198 ■ A first recurrent baseline 199
Using recurrent dropout to fight overfitting 201 ■ Stacking
recurrent layers 202 ■ Using bidirectional RNNs 204
Going even further 207 * Wrapping up 208
CONTENTS
XI
6.4 Sequence processing with convnets 209
Understanding ID convolution for sequence data 209
ID pooling for sequence data 210 ■ Implementing a ID
convnet 210 ■ Combining CNNs and RNNs to process long
sequences 212 ■ Wrapping up 216
6.5 Summary 216
/ Advanced deep-learning best practices 218
7.1 Going beyond the sequential model:
the Keras functional API 219
Introduction to the functional API 221 ■ Multi-input
models 222 ■ Multi-output models 224 ■ Directed acyclic
graphs of layers 221 ■ Layer weight sharing 231 ■ Models as
layers 232 ■ Wrapping up 233
7.2 Inspecting and monitoring deep-learning models using
Keras callbacks and TensorBoard 233
Using callbacks to act on a model during training 233
Introduction to TensorBoard: the TensorFlow visualization
framework 236 ■ Wrapping up 241
7.3 Getting the most out of your models 241
Advanced architecture patterns 241 ■ Hyperparameter
optimization 245 ■ Model ensembling 246 ■ Wrapping
up 248
7.4 Summary 249
Generative deep learning 250
8.1 Text generation with LSTM 252
A brief history of generative recurrent networks 252
How do you generate sequence data ? 253 • The importance
of the sampling strategy 253 • Implementing character-level
LSTM text generation 255 ■ Wrapping up 260
8.2 DeepDream 260
Implementing DeepDream in Keras 261 ■ Wrapping up 261
8.3 Neural style transfer 267
The content loss 268 ■ The style loss 268 ■ Neural style transfer
in Keras 269 ■ Wrapping up 214
8.4 Generating images with variational autoencoders 276
Sampling from latent spaces of images 216 * Concept vectors for
image editing 211 ■ Variational autoencoders 218
Wrapping up 284
xii
CONTENTS
8.5 Introduction to generative adversarial networks 284
A schematic GAN implementation 286 ■ A bag of tricks 286
The generator 287 • The discriminator 288
The adversarial network 289 ■ How to train your
DCGAN 290 * Wrapping up 292
8.6 Summary 292
9
Conclusions 293
9.1 Key concepts in review 294
Various approaches to AI 294 ■ What makes deep learning special
within the field of machine learning 294 ■ How to think about
deep learning 295 ■ Key enabling technologies 296
The universal machine-learning workflow 297 ■ Key netivork
architectures 298 ■ The space of possibilities 302
9.2 The limitations of deep learning 303
The risk of anthropomorphizing machine-learning models 304
Local generalization vs. extreme generalization 306
Wrapping up 307
9.3 The future of deep learning 307
Models as programs 308 ■ Beyond backpropagation and
differentiable layers 310 ■ Automated machine learning 310
Lifelong learning and modular subroutine reuse 311 • The long-
term vision 313
9.4 Staying up to date in a fast-moving field 313
Practice on real-world problems using Kaggle 314 ■ Read about
the latest developments on arXiv 314 ■ Explore the Keras
ecosystem 315
9.5 Final words 315
appendix A Installing Keras and its dependencies on Ubuntu 316
appendix B Running RStudio Server on an EC2 GPU instance 320
index 327
|
any_adam_object | 1 |
author | Chollet, François Allaire, J. J. 1969- |
author_GND | (DE-588)1151332550 (DE-588)1169258654 |
author_facet | Chollet, François Allaire, J. J. 1969- |
author_role | aut aut |
author_sort | Chollet, François |
author_variant | f c fc j j a jj jja |
building | Verbundindex |
bvnumber | BV044743224 |
classification_rvk | ST 250 ST 300 ST 301 ST 302 ST 601 |
ctrlnum | (OCoLC)1027009658 (DE-599)BVBBV044743224 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03394nam a2200733 c 4500</leader><controlfield tag="001">BV044743224</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210504 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180202s2018 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781617295546</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-61729-554-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">161729554X</subfield><subfield code="9">1-61729-554-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1027009658</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044743224</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68T05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chollet, François</subfield><subfield code="0">(DE-588)1151332550</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning with R</subfield><subfield code="c">François Chollet, with J.J. Allaire</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Shelter Island, NY</subfield><subfield code="b">Manning</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxi, 335 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Introduces deep learning systems using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Text Mining</subfield><subfield code="0">(DE-588)4728093-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Text Mining</subfield><subfield code="0">(DE-588)4728093-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Allaire, J. J.</subfield><subfield code="d">1969-</subfield><subfield code="0">(DE-588)1169258654</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="w">(DE-604)BV045143765</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030139017&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030139017</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV044743224 |
illustrated | Illustrated |
indexdate | 2024-08-01T10:43:02Z |
institution | BVB |
isbn | 9781617295546 161729554X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030139017 |
oclc_num | 1027009658 |
open_access_boolean | |
owner | DE-20 DE-83 DE-945 DE-739 DE-863 DE-BY-FWS DE-355 DE-BY-UBR DE-11 DE-384 DE-19 DE-BY-UBM DE-703 DE-521 |
owner_facet | DE-20 DE-83 DE-945 DE-739 DE-863 DE-BY-FWS DE-355 DE-BY-UBR DE-11 DE-384 DE-19 DE-BY-UBM DE-703 DE-521 |
physical | xxi, 335 Seiten Illustrationen, Diagramme 24 cm |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Manning |
record_format | marc |
spellingShingle | Chollet, François Allaire, J. J. 1969- Deep learning with R Neuronales Netz (DE-588)4226127-2 gnd Maschinelles Sehen (DE-588)4129594-8 gnd Keras Framework, Informatik (DE-588)1160521077 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Datenanalyse (DE-588)4123037-1 gnd Text Mining (DE-588)4728093-1 gnd Deep learning (DE-588)1135597375 gnd R Programm (DE-588)4705956-4 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
subject_GND | (DE-588)4226127-2 (DE-588)4129594-8 (DE-588)1160521077 (DE-588)4193754-5 (DE-588)4123037-1 (DE-588)4728093-1 (DE-588)1135597375 (DE-588)4705956-4 (DE-588)4033447-8 |
title | Deep learning with R |
title_auth | Deep learning with R |
title_exact_search | Deep learning with R |
title_full | Deep learning with R François Chollet, with J.J. Allaire |
title_fullStr | Deep learning with R François Chollet, with J.J. Allaire |
title_full_unstemmed | Deep learning with R François Chollet, with J.J. Allaire |
title_short | Deep learning with R |
title_sort | deep learning with r |
topic | Neuronales Netz (DE-588)4226127-2 gnd Maschinelles Sehen (DE-588)4129594-8 gnd Keras Framework, Informatik (DE-588)1160521077 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Datenanalyse (DE-588)4123037-1 gnd Text Mining (DE-588)4728093-1 gnd Deep learning (DE-588)1135597375 gnd R Programm (DE-588)4705956-4 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
topic_facet | Neuronales Netz Maschinelles Sehen Keras Framework, Informatik Maschinelles Lernen Datenanalyse Text Mining Deep learning R Programm Künstliche Intelligenz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030139017&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cholletfrancois deeplearningwithr AT allairejj deeplearningwithr |
Inhaltsverzeichnis
Würzburg Zentralbibliothek Lesesaal
Signatur: |
1000 ST 302 R01 C5 |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |