Theoretical molecular biophysics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Springer
[2017]
|
Ausgabe: | Second edition |
Schriftenreihe: | Biological and medical physics, biomedical engineering
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XVI, 513 Seiten Illustrationen, Diagramme (teilweise farbig) |
ISBN: | 9783662556702 3662556707 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV044738519 | ||
003 | DE-604 | ||
005 | 20180215 | ||
007 | t | ||
008 | 180131s2017 gw a||| |||| 00||| eng d | ||
015 | |a 17,N28 |2 dnb | ||
016 | 7 | |a 1136383441 |2 DE-101 | |
020 | |a 9783662556702 |c hbk. |9 978-3-662-55670-2 | ||
020 | |a 3662556707 |9 3-662-55670-7 | ||
035 | |a (OCoLC)1024097029 | ||
035 | |a (DE-599)DNB1136383441 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 |a DE-11 |a DE-29T |a DE-355 |a DE-91G | ||
082 | 0 | |a 572 |2 22/ger | |
082 | 0 | |a 570 |2 23 | |
084 | |a WD 2100 |0 (DE-625)148162: |2 rvk | ||
084 | |a WD 2200 |0 (DE-625)148163: |2 rvk | ||
084 | |a PHY 821f |2 stub | ||
100 | 1 | |a Scherer, Philipp O. J. |e Verfasser |0 (DE-588)110745108 |4 aut | |
245 | 1 | 0 | |a Theoretical molecular biophysics |c Philipp O.J. Scherer, Sighart F. Fischer |
250 | |a Second edition | ||
264 | 1 | |a Berlin |b Springer |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a XVI, 513 Seiten |b Illustrationen, Diagramme (teilweise farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Biological and medical physics, biomedical engineering | |
650 | 0 | 7 | |a Theoretische Biophysik |0 (DE-588)4185096-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Molekulare Biophysik |0 (DE-588)4170391-1 |2 gnd |9 rswk-swf |
653 | |a PDE | ||
653 | |a TC | ||
653 | |a Elementary Processes in Biophysics | ||
653 | |a Molecular Biophysics Explained | ||
653 | |a Theoretical Biophysics textbook | ||
653 | |a Molecular Biophysics Textbook | ||
653 | |a Photosynthetic System | ||
653 | |a Statistical Mechanics of Biopolymers | ||
653 | |a Reaction Kinetics | ||
653 | |a Photoinduced Processes | ||
689 | 0 | 0 | |a Molekulare Biophysik |0 (DE-588)4170391-1 |D s |
689 | 0 | 1 | |a Theoretische Biophysik |0 (DE-588)4185096-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Fischer, Sighart F. |d 1938- |e Verfasser |0 (DE-588)1089786549 |4 aut | |
710 | 2 | |a Springer-Verlag GmbH |0 (DE-588)1065168780 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |a Scherer, Philipp O.J. |t Theoretical Molecular Biophysics |z 978-3-662-55671-9 |d Berlin, Heidelberg : Springer Berlin Heidelberg, 2017 |h Online-Ressourcen |
780 | 0 | 0 | |i Vorangegangen ist |z 9783540856092 |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=d33b254531584b21ade346da1f05250f&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030134416&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030134416 |
Datensatz im Suchindex
_version_ | 1804178240162496512 |
---|---|
adam_text | CONTENTS
PART I STATISTICAL MECHANICS OF BIOPOLYMERS
1 RANDOM WALK MODELS FOR THE CONFORMATION
......................................
3
1.1 THE FREELY JOINTED C H AIN
............................................................... 3
1.1.1 ENTROPIE ELASTICITY
............................................................
5
1.1.2 FORCE-EXTENSION R ELATION
...............................................
6
1.2 TWO COMPONENT M O D
EL................................................................. 9
1.2.1 FORCE-EXTENSION RELATION
.................................................
10
1.2.2 TWO COMPONENT MODEL WITH INTERACTIONS...................... 12
2 FLORY-HUGGINS THEORY FOR BIOPOLYMER SOLUTIONS
................................
21
2.1 MONOMERIC
SOLUTION........................................................................
21
2.2 POLYMERIC
SOLUTION..........................................................................
24
2.3 PHASE
TRANSITIONS............................................................................
30
2.3.1 STABILITY C RITERION
............................................................
30
2.3.2 CRITICAL
COUPLING...............................................................
32
2.3.3 PHASE
DIAGRAM...................................................................
34
PROBLEMS.........................................................................................................
37
PART II PROTEIN ELECTROSTATICS AND SOLVATION
3 IMPLICIT CONTINUUM SOLVENT
MODELS........................................................ 41
3.1 POTENTIAL OF MEAN F
ORCE................................................................. 41
3.2 DIELECTRIC CONTINUUM MODEL
..........................................................
42
3.3 BOM M O D E
L.....................................................................................
44
3.4 CHARGES IN A
PROTEIN........................................................................
45
3.5 TIME DEPENDENT REACTION F IE LD
...................................................
48
3.6 GENERALIZED BOM M
ODELS............................................................... 50
4 DEBYE-HUECKEL T
HEORY.................................................................................
53
4.1 ELECTROSTATIC SHIELDING BY MOBILE C
HARGES.................................. 53
4.2 1-1
ELECTROLYTES.................................................................................
55
4.3 CHARGED
SPHERE.................................................................................
55
4.4 CHARGED C YLINDER
............................................................................
58
4.5 CHARGED MEMBRANE (GOUEY-CHAPMAN DOUBLE LAYER)
................
61
4.6 STEM MODIFICATION OF THE DOUBLE L AYER
......................................
67
PROBLEMS..........................................................................................................
68
5 PROTONATION E Q U ILIB R IA
...............................................................................
71
5.1 PROTONATION EQUILIBRIA IN SOLUTION
.................................................
71
5.2 PROTONATION EQUILIBRIA IN PROTEINS
.................................................
75
5.2.1 APPARENT
PKA
VALUES
........................................................
75
5.2.2 PROTONATION ENTHALPY
........................................................
76
5.2.3 PROTONATION ENTHALPY RELATIVE TO THE UNCHARGED
S TA TE
...................................................................................
78
5.2.4 STATISTICAL MECHANICS OF PROTONATION
.............................
79
5.3 ABNORMAL TITRATION CURVES OF COUPLED R ESIDUES
......................
80
PROBLEMS..........................................................................................................
81
P A RT III REACTION KINETICS
6 FORM AL K
INETICS............................................................................................
85
6.1 ELEMENTARY CHEMICAL R
EACTIONS.................................................... 85
6.2 REACTION VARIABLE AND REACTION R A TE
........................................... 85
6.3 REACTION O
RDER.................................................................................
87
6.3.1 ZERO-ORDER REACTIONS
........................................................
87
6.3.2 FIRST-ORDER REACTIONS
........................................................
87
6.3.3 SECOND-ORDER
REACTIONS.................................................... 88
6.4 DYNAMICAL EQUILIBRIUM
...................................................................
89
6.5 COMPETING R
EACTIONS......................................................................
90
6.6 CONSECUTIVE R EACTIONS
...................................................................
90
6.7 ENZYMATIC C
ATALYSIS........................................................................
91
6.8 REACTIONS IN S OLUTIO NS
...................................................................
93
6.8.1 DIFFUSION CONTROLLED LIMIT
...............................................
94
6.8.2 REACTION CONTROLLED L IM
IT...........................................
..
. 95
PROBLEMS..........................................................................................................
95
7 KINETIC THEORY - FOKKER-PLANCK E Q U A TIO N
........................................... 97
7.1 STOCHASTIC DIFFERENTIAL EQUATION FOR BROWNIAN M OTION..............
97
7.2 PROBABILITY DISTRIBUTION
...................................................................
99
7.3
DIFFUSION............................................................................................
101
7.3.1 SHARP INITIAL DISTRIBUTION
.................................................
102
7.3.2 ABSORBING BOUNDARY
........................................................
103
7.4 FOKKER-PLANCK EQUATION FOR BROWNIAN MOTION
...........................
104
7.5 STATIONARY SOLUTION TO THE FOKKER-PLANCK E QUATION
..................
105
7.6 DIFFUSION IN AN EXTERNAL POTENTIAL
.................................................
107
7.7 LARGE FRICTION LIMIT - SMOLUCHOWSKI
EQUATION......................... 109
7.8 MASTER EQUATION
..............................................................................
110
PROBLEMS.........................................................................................................
110
8 K RAM ERS T H E O RY
..........................................................................................
113
8.1 KRAMERS* M ODEL
..............................................................................
113
8.2 KRAMERS* CALCULATION OF THE REACTION R
ATE.................................. 115
9 DISPERSIVE K IN E TIC
S.....................................................................................
119
9.1 DICHOTOMOUS M
ODEL........................................................................
120
9.1.1 FAST SOLVENT FLUCTUATIONS
.................................................
123
9.1.2 SLOW SOLVENT
FLUCTUATIONS............................................... 124
9.1.3 NUMERICAL EXAMPLE
..........................................................
125
9.2 CONTINUOUS TIME RANDOM WALK
PROCESSES.................................. 126
9.2.1 FORMULATION OF THE M ODEL
...............................................
126
9.2.2 EXPONENTIAL WAITING TIME DISTRIBUTION......................... 127
9.2.3 COUPLED EQUATIONS
............................................................
129
9.3 POWERTIME LAW
KINETICS.................................................................
134
PROBLEMS.........................................................................................................
136
P ART IV T RANSPORT PROCESSES
10 NON-EQUILIBRIUM THERM ODYNAM ICS
..........................................................
139
10.1 CONTINUITY EQUATION FOR THE MASS D EN SITY
.................................. 140
10.2 ENERGY
CONSERVATION........................................................................
141
10.3 ENTROPY
PRODUCTION..........................................................................
142
10.4 PHENOMENOLOGICAL RELATIONS
..........................................................
145
10.5 STATIONARY STATES
..............................................................................
145
PROBLEMS.........................................................................................................
147
11 SIMPLE TRANSPORT P
ROCESSES......................................................................
149
11.1 HEAT T RANSPORT
................................................................................
149
11.2 DIFFUSION IN AN EXTERNAL ELECTRIC F IE LD
........................................
150
PROBLEMS.........................................................................................................
153
12 ION T RANSPORT THROUGH A M E M B RA N E
..................................................... 155
12.1 DIFFUSIVE
TRANSPORT..........................................................................
155
12.2 GOLDMAN-HODGKIN-KATZ M
ODEL.................................................... 158
12.3 HODGKIN-HUXLEY M
ODEL.................................................................
161
12.4 COOPERATIVELY IN ION CHANNEL K INETICS
........................................
163
12.4.1 MWC M ODEL
.....................................................................
164
12.4.2 KNF M
ODEL........................................................................
167
XII CONTENTS
13 REACTION-DIFFUSION S Y STE M
S......................................................................
173
13.1
DERIVATION..........................................................................................
173
13.2
LINEARIZATION.....................................................................................
174
13.3 FITZHUGH-NAGUMO M
ODEL............................................................... 175
P A RT V REACTION RATE THEORY
14 EQUILIBRIUM
REACTIONS.................................................................................
183
14.1 ARRHENIUS L A W
.................................................................................
183
14.2 STATISTICAL INTERPRETATION OF THE EQUILIBRIUM CONSTANT
.................
185
15 CALCULATION OF REACTION R ATES
...................................................................
187
15.1 COLLISION
THEORY...............................................................................
187
15.2 TRANSITION STATE THEORY
...................................................................
190
15.3 COMPARISON BETWEEN COLLISION THEORY AND TRANSITION
STATE THEORY
.....................................................................................
192
15.4 THERMODYNAMICAL FORMULATION OF TST
........................................
194
15.5 KINETIC ISOTOPE E FFECTS
...................................................................
195
15.6 GENERAL RATE
EXPRESSIONS...............................................................
196
15.6.1 THE FLUX
OPERATOR.............................................................
197
PROBLEMS..........................................................................................................
199
16 M ARCUS THEORY OF ELECTRON TRAN
SFER........................................................ 201
16.1 PHENOMENOLOGICAL DESCRIPTION OF E T
........................................... 201
16.2 SIMPLE EXPLANATION OF MARCUS T HEORY
........................................
204
16.3 FREE ENERGY CONTRIBUTION OF THE NONEQUILIBRIUM
POLARIZATION........................................................................................
205
16.4 ACTIVATION ENERGY
............................................................................
209
16.5 SIMPLE MODEL SYSTEM S
...................................................................
213
16.5.1 CHARGE
SEPARATION.............................................................
215
16.5.2 CHARGE S H IF
T......................................................................
216
16.6 THE ENERGY GAP AS THE REACTION C OORDINATE
.............................
216
16.7 INNER SHELL
REORGANIZATION.............................................................
218
16.8 THE TRANSMISSION COEFFICIENT FOR NONADIABATIC ELECTRON
T RA N
SFER............................................................................................
219
16.9 CHARGE DELOCALIZATION AND SELF-TRAPPING
....................................
220
PROBLEMS..........................................................................................................
223
P A RT VI ELEM ENTARY PHOTOPHYSICS
17 M OLECULAR S TA TE S
..........................................................................................
227
17.1 BOM-OPPENHEIMER
SEPARATION...................................................... 227
17.2 HARMONIC APPROXIMATION TO THE NUCLEAR M OTION
......................
229
17.3 NONADIABATIC INTERACTION
.................................................................
232
17.4 *TRUE* MOLECULAR EIGENSTATES
........................................................
235
18 INTRAM OLECULAR ELECTRONIC T RANSITIONS
...................................................
237
18.1 COUPLING TO THE RADIATION F IE LD
...................................................
238
18.2 OPTICAL
TRANSITIONS..........................................................................
242
18.3 DIPOLE TRANSITIONS IN THE CONDON APPROXIMATION
......................
244
18.4 TIME-CORRELATION FUNCTION (TCF) FORM ALISM
.............................
245
18.5 EXCITATION BY A SHORT PULSE
............................................
246
18.6 RADIATIONLESS
TRANSITIONS.................................................................
247
18.6.1 INTERNAL CONVERSION
..........................................................
248
18.6.2 INTERSYSTEM
CROSSING........................................................ 249
PROBLEMS.........................................................................................................
249
19 THE DISPLACED HARM ONIC O
SCILLATOR........................................................ 251
19.1 THE TIME-CORRELATION FUNCTION IN THE DISPLACED HARMONIC
OSCILLATOR
APPROXIMATION...............................................................
251
19.2 HIGH FREQUENCY MODES
...................................................................
254
19.3 LOW FREQUENCY M ODES
...................................................................
255
20 SPECTRAL D
IFFUSION.......................................................................................
257
20.1
DEPHASING..........................................................................................
257
20.2 GAUSSIAN FLUCTUATIONS
.....................................................................
260
20.2.1 LONG CORRELATION T IM E
....................................................
262
20.2.2 SHORT CORRELATION T IM E
....................................................
262
20.3 MARKOVIAN M ODULATION
...................................................................
263
PROBLEMS.........................................................................................................
267
21 CROSSING OF TWO ELECTRONIC S TA TE S
..........................................................
269
21.1 WAVEPACKET M
OTION........................................................................
269
21.1.1 FREE PARTICLE M O TIO N
........................................................ 270
21.1.2 HARMONIC OSCILLATOR
..........................................................
272
21.2 THE ADIABATIC TO DIABATIC TRANSFORM
ATION.................................. 273
21.3 QUASIDIABATIC S TA
TES........................................................................
278
21.4 CROSSING BETWEEN TWO
STATES........................................................ 280
21.5 AVOIDED CROSSING ALONG ONE
COORDINATE.................................... 281
21.6 SEMICLASSICAL APPROXIM
ATION........................................................ 284
21.7 LANDAU-ZENER M O D EL
.....................................................................
285
21.8 APPLICATION TO DIABATIC E T
............................................................
287
21.9 CONICAL
INTERSECTIONS........................................................................
288
21.10 LINEAR VIBRONIC COUPLING M O D EL
.................................................
290
PROBLEMS.........................................................................................................
293
22 DYNAMICS OF AN EXCITED S
TATE...................................................................
295
22.1 COUPLING TO A
QUASI-CONTINUUM.................................................... 295
22.2 GREEN*S
FORMALISM..........................................................................
296
22.2.1 RESOLVENT AND PROPAGATOR
...............................................
297
22.2.2 DYSON
EQUATION.................................................................
300
XIV CONTENTS
22.2.3 TRANSITION O PERATOR
..........................................................
301
22.2.4 LEVEL
SHIFT..........................................................................
301
22.3 LADDER M
ODEL...................................................................................
303
22.4 DESCRIPTION WITHIN THE SADDLE POINT M ETHOD
.............................
308
22.5 THE ENERGY GAP L A W
......................................................................
313
PROBLEMS..........................................................................................................
317
P A RT VII ELEM ENTARY PHOTOINDUCED PROCESSES
23 PHOTOPHYSICS OF CHLOROPHYLLS AND
CAROTENOIDS...................................... 321
23.1 MO MODEL FOR THE ELECTRONIC STATES
.............................................
321
23.2 THE FREE ELECTRON MODEL FOR POLYENES
........................................
322
23.3 THE LCAO
APPROXIMATION.............................................................
324
23.4 HUECKEL APPROXIMATION
...................................................................
325
23.5 SIMPLIFIED CL MODEL FOR POLYENES
.................................................
327
23.6 CYCLIC POLYENE AS A MODEL FOR
PORPHYRINS.................................. 328
23.7 THE FOUR ORBITAL MODEL FOR PORPHYRINS
......................................
329
23.8 ENERGY TRANSFER P
ROCESSES.............................................................
331
PROBLEMS..........................................................................................................
332
24 INCOHERENT ENERGY T RA N SFE
R......................................................................
335
24.1 EXCITED
STATES...................................................................................
335
24.2 ENERGY TRANSFER MECHANISM
..........................................................
337
24.3 INTERACTION MATRIX ELEM
ENT............................................................. 338
24.4 MULTIPOLE EXPANSION OF THE EXCITONIC INTERACTION
......................
339
24.5 ENERGY TRANSFER R A TE
......................................................................
341
24.6 SPECTRAL
OVERLAP...............................................................................
342
24.7 ENERGY TRANSFER IN THE TRIPLET S TA TE
............................................. 346
25 COHERENT EXCITATIONS IN PHOTOSYNTHETIC SYSTEM S
...................................
349
25.1 COHERENT
EXCITATIONS.........................................................................
350
25.1.1 STRONGLY COUPLED D IM E RS
...............................................
350
25.1.2 EXCITONIC STRUCTURE OF THE REACTION C EN TER
..................
355
25.1.3 CIRCULAR MOLECULAR A GGREGATES
......................................
356
25.1.4 DIMERIZED SYSTEMS OF
LHII............................................. 362
25.2 INFLUENCE OF D
ISORDER......................................................................
367
25.2.1 SYMMETRY BREAKING LOCAL PERTURBATION
.........................
367
25.2.2 PERIODIC M ODULATION
........................................................
369
25.2.3 DIAGONAL
DISORDER.............................................................
372
25.2.4 OFF-DIAGONAL
DISORDER...................................................... 374
PROBLEMS..........................................................................................................
376
26 CHARGE TRANSFER IN D N A
..........................................................................
379
26.1 DIFFUSIVE HOLE
TRANSFER...................................................................
380
26.2 TUNNELING OVER BRIDGE S
TATES........................................................ 382
26.3 COMBINED TRANSFER M ECHANISM
...................................................
383
27 PROTON T RANSFER IN BIOM OLECULES
............................................................
385
27.1 THE PROTON PUMP
BACTERIORHODOPSIN............................................. 386
27.2 BORN-OPPENHEIMER
SEPARATION...................................................... 388
27.3 NONADIABATIC PROTON TRANSFER (SMALL
COUPLING)......................... 390
27.4 STRONGLY BOUND P
ROTONS.................................................................
391
27.5 ADIABATIC PROTON
TRANSFER...............................................................
393
28 PROTON COUPLED COHERENT CHARGE T R A N S FE R
.........................................
395
28.1 THE NONADIABATIC ELECTRONIC INCOHERENT
STEP TRANSFER M
ODEL........................................................................
395
28.1.1 THE RATE
EXPRESSION........................................................ 396
28.1.2 APPLICATION OF THE SADDLE POINT M ETHOD
........................
398
28.2 HETEROGENEOUS SUPEREXCHANGE COUPLING
......................................
402
28.3 PROTON COUPLED SUPEREXCHANGE
...................................................
409
28.4 COHERENT
DYNAMICS..........................................................................
411
28.5 COHERENT O SCILLATIONS
.....................................................................
412
P A RT V M MOLECULAR M OTOR MODELS
29 CONTINUOUS RATCHET M O D ELS
.....................................................................
417
29.1 TRANSPORT E
QUATIONS........................................................................
418
29.2 A SIMPLE SAWTOOTH R
ATCHET.......................................................... 423
29.3 RATCHETS IN THE LOW TEMPERATURE L IM IT
......................................
426
29.4 CHEMICAL TRANSITIONS
.....................................................................
429
29.5 THE TWO-STATE M ODEL
.....................................................................
435
29.5.1 THE CHEMICAL C Y C LE
........................................................ 436
29.5.2 THE FAST REACTION L IM IT
.................................................
441
29.5.3 THE FAST DIFFUSION LIM IT
.................................................
441
29.5.4 OPERATION CLOSE TO THERMAL EQUILIBRIUM....................... 443
29.6 RATCHET WITH LOCALIZED REACTIONS
.................................................
445
PROBLEMS.........................................................................................................
448
30 DISCRETE RATCHET M
ODELS............................................................................
449
30.1 LINEAR DISCRETE
RATCHETS.................................................................
449
30.2 LINEAR MODEL WITH TWO INTERNAL STATES
........................................
449
P ART IX APPENDIX
APPENDIX A: THE G RAND CANONICAL E NSEM
BLE............................................. 455
A .L GRAND CANONICAL
DISTRIBUTION........................................... 456
A.2 CONNECTION TO THERMODYNAMICS
......................................
457
XVI CONTENTS
APPENDIX B: CLASSICAL APPROXIM ATION OF QUANTUM M O TIO N
....................
459
APPENDIX C: TIME CORRELATION FUNCTION OF THE DISPLACED HARM ONIE
OSCILLATOR M
ODEL..........................................................................
463
C.L EVALUATION OF THE TIME CORRELATION FUNCTION
.................... 463
C.2 BOSON
ALGEBRA..................................................................
465
C.2.1 DERIVATION OF THEOREM 1
.....................................
465
C.2.2 DERIVATION OF THEOREM 2
.....................................
466
C.2.3 DERIVATION OF THEOREM 3
...................................
466
C.2.4 DERIVATION OF THEOREM
4
.....................................
467
APPENDIX D: COMPLEX COTANGENT F U N C TIO N
................................................
469
APPENDIX E: THE SADDLE POINT M
ETHOD......................................................... 471
S O LU TIO N
S................................................................................................................
475
R
EFERENCES..............................................................................................................
503
I N D E X
.......................................................................................................................
509
|
any_adam_object | 1 |
author | Scherer, Philipp O. J. Fischer, Sighart F. 1938- |
author_GND | (DE-588)110745108 (DE-588)1089786549 |
author_facet | Scherer, Philipp O. J. Fischer, Sighart F. 1938- |
author_role | aut aut |
author_sort | Scherer, Philipp O. J. |
author_variant | p o j s poj pojs s f f sf sff |
building | Verbundindex |
bvnumber | BV044738519 |
classification_rvk | WD 2100 WD 2200 |
classification_tum | PHY 821f |
ctrlnum | (OCoLC)1024097029 (DE-599)DNB1136383441 |
dewey-full | 572 570 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry 570 - Biology |
dewey-raw | 572 570 |
dewey-search | 572 570 |
dewey-sort | 3572 |
dewey-tens | 570 - Biology |
discipline | Physik Biologie |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02730nam a22006498c 4500</leader><controlfield tag="001">BV044738519</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180215 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180131s2017 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">17,N28</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1136383441</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662556702</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-3-662-55670-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3662556707</subfield><subfield code="9">3-662-55670-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1024097029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1136383441</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 2100</subfield><subfield code="0">(DE-625)148162:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 2200</subfield><subfield code="0">(DE-625)148163:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 821f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scherer, Philipp O. J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110745108</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical molecular biophysics</subfield><subfield code="c">Philipp O.J. Scherer, Sighart F. Fischer</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 513 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (teilweise farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Biological and medical physics, biomedical engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theoretische Biophysik</subfield><subfield code="0">(DE-588)4185096-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekulare Biophysik</subfield><subfield code="0">(DE-588)4170391-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PDE</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TC</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elementary Processes in Biophysics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Molecular Biophysics Explained</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theoretical Biophysics textbook</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Molecular Biophysics Textbook</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Photosynthetic System</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Statistical Mechanics of Biopolymers</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Reaction Kinetics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Photoinduced Processes</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Molekulare Biophysik</subfield><subfield code="0">(DE-588)4170391-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Theoretische Biophysik</subfield><subfield code="0">(DE-588)4185096-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fischer, Sighart F.</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089786549</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Springer-Verlag GmbH</subfield><subfield code="0">(DE-588)1065168780</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="a">Scherer, Philipp O.J.</subfield><subfield code="t">Theoretical Molecular Biophysics</subfield><subfield code="z">978-3-662-55671-9</subfield><subfield code="d">Berlin, Heidelberg : Springer Berlin Heidelberg, 2017</subfield><subfield code="h">Online-Ressourcen</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Vorangegangen ist</subfield><subfield code="z">9783540856092</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=d33b254531584b21ade346da1f05250f&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030134416&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030134416</subfield></datafield></record></collection> |
id | DE-604.BV044738519 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:00:49Z |
institution | BVB |
institution_GND | (DE-588)1065168780 |
isbn | 9783662556702 3662556707 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030134416 |
oclc_num | 1024097029 |
open_access_boolean | |
owner | DE-20 DE-11 DE-29T DE-355 DE-BY-UBR DE-91G DE-BY-TUM |
owner_facet | DE-20 DE-11 DE-29T DE-355 DE-BY-UBR DE-91G DE-BY-TUM |
physical | XVI, 513 Seiten Illustrationen, Diagramme (teilweise farbig) |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Springer |
record_format | marc |
series2 | Biological and medical physics, biomedical engineering |
spelling | Scherer, Philipp O. J. Verfasser (DE-588)110745108 aut Theoretical molecular biophysics Philipp O.J. Scherer, Sighart F. Fischer Second edition Berlin Springer [2017] © 2017 XVI, 513 Seiten Illustrationen, Diagramme (teilweise farbig) txt rdacontent n rdamedia nc rdacarrier Biological and medical physics, biomedical engineering Theoretische Biophysik (DE-588)4185096-8 gnd rswk-swf Molekulare Biophysik (DE-588)4170391-1 gnd rswk-swf PDE TC Elementary Processes in Biophysics Molecular Biophysics Explained Theoretical Biophysics textbook Molecular Biophysics Textbook Photosynthetic System Statistical Mechanics of Biopolymers Reaction Kinetics Photoinduced Processes Molekulare Biophysik (DE-588)4170391-1 s Theoretische Biophysik (DE-588)4185096-8 s DE-604 Fischer, Sighart F. 1938- Verfasser (DE-588)1089786549 aut Springer-Verlag GmbH (DE-588)1065168780 pbl Erscheint auch als Online-Ausgabe Scherer, Philipp O.J. Theoretical Molecular Biophysics 978-3-662-55671-9 Berlin, Heidelberg : Springer Berlin Heidelberg, 2017 Online-Ressourcen Vorangegangen ist 9783540856092 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=d33b254531584b21ade346da1f05250f&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030134416&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Scherer, Philipp O. J. Fischer, Sighart F. 1938- Theoretical molecular biophysics Theoretische Biophysik (DE-588)4185096-8 gnd Molekulare Biophysik (DE-588)4170391-1 gnd |
subject_GND | (DE-588)4185096-8 (DE-588)4170391-1 |
title | Theoretical molecular biophysics |
title_auth | Theoretical molecular biophysics |
title_exact_search | Theoretical molecular biophysics |
title_full | Theoretical molecular biophysics Philipp O.J. Scherer, Sighart F. Fischer |
title_fullStr | Theoretical molecular biophysics Philipp O.J. Scherer, Sighart F. Fischer |
title_full_unstemmed | Theoretical molecular biophysics Philipp O.J. Scherer, Sighart F. Fischer |
title_short | Theoretical molecular biophysics |
title_sort | theoretical molecular biophysics |
topic | Theoretische Biophysik (DE-588)4185096-8 gnd Molekulare Biophysik (DE-588)4170391-1 gnd |
topic_facet | Theoretische Biophysik Molekulare Biophysik |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=d33b254531584b21ade346da1f05250f&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030134416&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schererphilippoj theoreticalmolecularbiophysics AT fischersighartf theoreticalmolecularbiophysics AT springerverlaggmbh theoreticalmolecularbiophysics |