Projection-based clustering through self-organization and swarm intelligence: combining cluster analysis with the visualization of high-dimensional data
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Springer Vieweg
[2018]
|
Schlagworte: | |
Online-Zugang: | Volltext Inhaltsverzeichnis |
Beschreibung: | XX, 201 Seiten Illustrationen, Diagramme 24 cm x 16.8 cm |
ISBN: | 9783658205393 3658205393 |
DOI: | 10.1007/978-3-658-20540-9 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV044729186 | ||
003 | DE-604 | ||
005 | 20190111 | ||
007 | t | ||
008 | 180124s2018 gw a||| m||| 00||| eng d | ||
015 | |a 17,N49 |2 dnb | ||
016 | 7 | |a 1147309426 |2 DE-101 | |
020 | |a 9783658205393 |c Book : circa EUR 53.49 (DE) (freier Preis), circa EUR 54.99 (AT) (freier Preis), circa CHF 55.00 (freier Preis) |9 978-3-658-20539-3 | ||
020 | |a 3658205393 |9 3-658-20539-3 | ||
024 | 3 | |a 9783658205393 | |
035 | |a (OCoLC)1080949391 | ||
035 | |a (DE-599)DNB1147309426 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-HE | ||
049 | |a DE-83 |a DE-525 |a DE-12 |a DE-634 |a DE-210 |a DE-521 |a DE-1102 |a DE-Aug4 |a DE-573 |a DE-M347 |a DE-92 |a DE-1051 |a DE-898 |a DE-859 |a DE-860 |a DE-1049 |a DE-863 |a DE-862 |a DE-523 |a DE-Y3 |a DE-255 |a DE-Y7 |a DE-Y2 |a DE-70 |a DE-2174 |a DE-127 |a DE-22 |a DE-155 |a DE-150 |a DE-91 |a DE-384 |a DE-473 |a DE-19 |a DE-355 |a DE-703 |a DE-20 |a DE-706 |a DE-824 |a DE-29 |a DE-739 |a DE-235 | ||
082 | 0 | |a 004 |2 23 | |
084 | |a 004 |2 sdnb | ||
100 | 1 | |a Thrun, Michael Christoph |e Verfasser |0 (DE-588)1155946553 |4 aut | |
240 | 1 | 0 | |a A system for projection-based clustering through self-organization and swarm intelligence |
245 | 1 | 0 | |a Projection-based clustering through self-organization and swarm intelligence |b combining cluster analysis with the visualization of high-dimensional data |c Michael Christoph Thrun |
264 | 1 | |a Wiesbaden |b Springer Vieweg |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a XX, 201 Seiten |b Illustrationen, Diagramme |c 24 cm x 16.8 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Philipps-Universität Marburg |d 2017 | ||
650 | 0 | 7 | |a Dimensionsreduktion |0 (DE-588)4224279-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Visualisierung |0 (DE-588)4188417-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wissensextraktion |0 (DE-588)4546354-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Projektionsverfahren |0 (DE-588)4175879-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schwarmintelligenz |0 (DE-588)4793676-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cluster-Analyse |0 (DE-588)4070044-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hochdimensionale Daten |0 (DE-588)7862975-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Selbstorganisation |0 (DE-588)4126830-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unüberwachtes Lernen |0 (DE-588)4580265-8 |2 gnd |9 rswk-swf |
653 | |a Open Access | ||
653 | |a Cluster Analysis | ||
653 | |a Dimensionality Reduction | ||
653 | |a Swarm Intelligence | ||
653 | |a Visualization | ||
653 | |a Unsupervised machine learning | ||
653 | |a Data science | ||
653 | |a Knowledge Discovery | ||
653 | |a Self-Organization | ||
653 | |a Emergence | ||
653 | |a Game theory | ||
653 | |a Advanced Analytics | ||
653 | |a High-dimensional data | ||
653 | |a Multivariate data | ||
653 | |a Analysis of stuctured data | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Hochdimensionale Daten |0 (DE-588)7862975-5 |D s |
689 | 0 | 1 | |a Cluster-Analyse |0 (DE-588)4070044-6 |D s |
689 | 0 | 2 | |a Visualisierung |0 (DE-588)4188417-6 |D s |
689 | 0 | 3 | |a Dimensionsreduktion |0 (DE-588)4224279-4 |D s |
689 | 0 | 4 | |a Projektionsverfahren |0 (DE-588)4175879-1 |D s |
689 | 0 | 5 | |a Unüberwachtes Lernen |0 (DE-588)4580265-8 |D s |
689 | 0 | 6 | |a Wissensextraktion |0 (DE-588)4546354-2 |D s |
689 | 0 | 7 | |a Schwarmintelligenz |0 (DE-588)4793676-9 |D s |
689 | 0 | 8 | |a Selbstorganisation |0 (DE-588)4126830-1 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-658-20540-9 |
856 | 4 | 1 | |u https://doi.org/10.1007/978-3-658-20540-9 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030125284&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030125284 |
Datensatz im Suchindex
DE-BY-FWS_katkey | 712825 |
---|---|
_version_ | 1806186855381598208 |
adam_text | TABLE OF CONTENTS
DANKSAGUNG...............................................................................................................................
V
LIST OF
FIGURES...........................................................................................................................
IX
LIST OF
TABLES............................................................................................................................XV
ZUSAMMENFASSUNG..............................................................................................................
XVII
ABSTRACT.................................................................................................................................
XIX
1
INTRODUCTION.........................................................................................................................1
2
FUNDAMENTALS.....................................................................................................................
5
2.1 BASIC
DEFINITIONS........................................................................................................
5
2.2 CONCEPTS OF GRAPH THEORY APPLIED TO
PATTERNS........................................................ 10
2.3 OVERVIEW OF KNOWLEDGE
DISCOVERY.........................................................................
15
3 APPROACHES TO CLUSTER
ANALYSIS......................................................................................21
3.1 COMMON CLUSTERING
METHODS....................................................................................22
3.2 STRUCTURE OF NATURAL
CLUSTERS....................................................................................26
3.3 PROBLEMS WITH CLUSTERING
METHODS..........................................................................29
4 METHODS OF
PROJECTION......................................................................................................
33
4.1 COMMON
APPROACHES...............................................................................................33
4.2 EMERGENT SELF-ORGANIZING MAP
(ESOM).................................................................37
4.3 TYPES OF PROJECTION
METHODS....................................................................................40
5 VISUALIZING THE OUTPUT
SPACE..........................................................................................
43
5.1
EXAMPLES...................................................................................................................43
5.2 STRUCTURE
PRESERVATION................................................................................................45
5.3 GENERATING A TOPOGRAPHIC MAP FROM THE GENERALIZED U*-MATRIX
..........................
46
6 QUALITY ASSESSMENTS OF
VISUALIZATIONS...........................................................................55
6.1 COMMON QUALITY MEASURES
(QMS)..........................................................................58
6.2 TYPES OF QUALITY MEASURES FOR ASSESSING STRUCTURE PRESERVATION
...........................
67
6.3 INTRODUCING THE DELAUNAY CLASSIFICATION ERROR
(DCE).............................................73
7 BEHAVIOR-BASED SYSTEMS IN DATA
SCIENCE.......................................................................77
7.1 ARTIFICIAL BEHAVIOR BASED ON DATABOTS
....................................................................
80
7.2 SWARM INTELLIGENCE FOR UNSUPERVISED MACHINE
LEARNING........................................83
7.3 MISSING LINKS: EMERGENCE AND GAME
THEORY.........................................................87
8 DATABIONIC SWARM
(DBS)................................................................................................91
8.1 PROJ ECTION WITH
PSWARM............................................................................................91
8.2 COMPARING PSWARM WITH A PREVIOUSLY DEVELOPED APPROACH
.................................
98
8.3 CLUSTERING ON A GENERALIZED
U*-MATRIX.................................................................104
9 EXPERIMENTAL
METHODOLOGY...........................................................................................
107
9.1
DATASETS.................................................................................................................
107
9.2 PARAMETER
SETTINGS..................................................................................................
I L L
9.3 GENE ONTOLOGY
(GO)..............................................................................................
113
10 RESULTS ON PRE-CLASSIFIED DATA
SETS...............................................................................
117
10.1 COMPARISON WITH GIVEN
CLASSIFICATIONS.................................................................
117
10.2 EVALUATION OF PROJECTIONS USING THE DELAUNAY CLASSIFICATION ERROR
(DCE)
............
120
10.3 TOPOGRAPHIC MAPS WITH HYPSOMETRIC COLORS
.........................................................
122
11 DBS ON NATURAL DATA
SETS.............................................................................................
129
11.1 TYPES OF
LEUKEMIA.................................................................................................
129
11.2 WORLD GROSS DOMESTIC PRODUCT (WORLD
GDP).......................................................129
11.3 TETRAGONULA
BEES...................................................................................................
132
12 KNOWLEDGE DISCOVERY WITH DBS
...................................................................................
137
12.1
HYDROLOGY...............................................................................................................
137
12.2 PAIN
GENES...............................................................................................................143
13
DISCUSSION.........................................................................................................................149
14
CONCLUSION........................................................................................................................161
REFERENCES..............................................................................................................................
163
APPENDICES.............................................................................................................................
179
SUPPLEMENT A: EVALUATION OF COMMON
QMS....................................................179
SUPPLEMENT B: WINE DATASET DISTANCE
DISTRIBUTION..........................................185
SUPPLEMENT C: GENERALIZED UMATRIX OF PSWARM AND SOP
................................
186
SUPPLEMENT D: DBS VISUALIZATIONS OF S-SHAPE AND UNIFORM CUBOID
...............
191
SUPPLEMENT E: U-MATRIX VISUALIZATIONS OF ESOM PROJECTIONS
........................
192
SUPPLEMENT F: STATISTICAL TESTS IN HYDROLOGY
...................................................
194
SUPPLEMENT G: 3D PRINTS OF GENERALIZED UMATRIX VISUALIZATIONS OF DBS
.......
195
SUPPLEMENT H: CONTINGENCY TABLE FOR TETRAGONULA BEES CLUSTERING
................
196
SUPPLEMENT I: STATISTICAL TESTS FOR FCPS CLUSTERING COMPARED TO DBS
...........
197
INDEX........................................................................................................................................199
|
any_adam_object | 1 |
author | Thrun, Michael Christoph |
author_GND | (DE-588)1155946553 |
author_facet | Thrun, Michael Christoph |
author_role | aut |
author_sort | Thrun, Michael Christoph |
author_variant | m c t mc mct |
building | Verbundindex |
bvnumber | BV044729186 |
collection | ebook |
ctrlnum | (OCoLC)1080949391 (DE-599)DNB1147309426 |
dewey-full | 004 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004 |
dewey-search | 004 |
dewey-sort | 14 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-3-658-20540-9 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03912nam a22008418c 4500</leader><controlfield tag="001">BV044729186</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190111 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180124s2018 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">17,N49</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1147309426</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783658205393</subfield><subfield code="c">Book : circa EUR 53.49 (DE) (freier Preis), circa EUR 54.99 (AT) (freier Preis), circa CHF 55.00 (freier Preis)</subfield><subfield code="9">978-3-658-20539-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3658205393</subfield><subfield code="9">3-658-20539-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783658205393</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1080949391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1147309426</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-HE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-525</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Y3</subfield><subfield code="a">DE-255</subfield><subfield code="a">DE-Y7</subfield><subfield code="a">DE-Y2</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-2174</subfield><subfield code="a">DE-127</subfield><subfield code="a">DE-22</subfield><subfield code="a">DE-155</subfield><subfield code="a">DE-150</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-235</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thrun, Michael Christoph</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1155946553</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">A system for projection-based clustering through self-organization and swarm intelligence</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Projection-based clustering through self-organization and swarm intelligence</subfield><subfield code="b">combining cluster analysis with the visualization of high-dimensional data</subfield><subfield code="c">Michael Christoph Thrun</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Springer Vieweg</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 201 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm x 16.8 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Philipps-Universität Marburg</subfield><subfield code="d">2017</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimensionsreduktion</subfield><subfield code="0">(DE-588)4224279-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissensextraktion</subfield><subfield code="0">(DE-588)4546354-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektionsverfahren</subfield><subfield code="0">(DE-588)4175879-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwarmintelligenz</subfield><subfield code="0">(DE-588)4793676-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cluster-Analyse</subfield><subfield code="0">(DE-588)4070044-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochdimensionale Daten</subfield><subfield code="0">(DE-588)7862975-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Selbstorganisation</subfield><subfield code="0">(DE-588)4126830-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unüberwachtes Lernen</subfield><subfield code="0">(DE-588)4580265-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Open Access</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cluster Analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimensionality Reduction</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Swarm Intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Visualization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unsupervised machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Knowledge Discovery</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Self-Organization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Emergence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Game theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Advanced Analytics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">High-dimensional data</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Multivariate data</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analysis of stuctured data</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hochdimensionale Daten</subfield><subfield code="0">(DE-588)7862975-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Cluster-Analyse</subfield><subfield code="0">(DE-588)4070044-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Dimensionsreduktion</subfield><subfield code="0">(DE-588)4224279-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Projektionsverfahren</subfield><subfield code="0">(DE-588)4175879-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Unüberwachtes Lernen</subfield><subfield code="0">(DE-588)4580265-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Wissensextraktion</subfield><subfield code="0">(DE-588)4546354-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="7"><subfield code="a">Schwarmintelligenz</subfield><subfield code="0">(DE-588)4793676-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="8"><subfield code="a">Selbstorganisation</subfield><subfield code="0">(DE-588)4126830-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-658-20540-9</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/978-3-658-20540-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030125284&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030125284</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV044729186 |
illustrated | Illustrated |
indexdate | 2024-08-01T14:06:54Z |
institution | BVB |
isbn | 9783658205393 3658205393 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030125284 |
oclc_num | 1080949391 |
open_access_boolean | 1 |
owner | DE-83 DE-525 DE-12 DE-634 DE-210 DE-521 DE-1102 DE-Aug4 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-523 DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-150 DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 DE-235 |
owner_facet | DE-83 DE-525 DE-12 DE-634 DE-210 DE-521 DE-1102 DE-Aug4 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-523 DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-150 DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 DE-235 |
physical | XX, 201 Seiten Illustrationen, Diagramme 24 cm x 16.8 cm |
psigel | ebook |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer Vieweg |
record_format | marc |
spellingShingle | Thrun, Michael Christoph Projection-based clustering through self-organization and swarm intelligence combining cluster analysis with the visualization of high-dimensional data Dimensionsreduktion (DE-588)4224279-4 gnd Visualisierung (DE-588)4188417-6 gnd Wissensextraktion (DE-588)4546354-2 gnd Projektionsverfahren (DE-588)4175879-1 gnd Schwarmintelligenz (DE-588)4793676-9 gnd Cluster-Analyse (DE-588)4070044-6 gnd Hochdimensionale Daten (DE-588)7862975-5 gnd Selbstorganisation (DE-588)4126830-1 gnd Unüberwachtes Lernen (DE-588)4580265-8 gnd |
subject_GND | (DE-588)4224279-4 (DE-588)4188417-6 (DE-588)4546354-2 (DE-588)4175879-1 (DE-588)4793676-9 (DE-588)4070044-6 (DE-588)7862975-5 (DE-588)4126830-1 (DE-588)4580265-8 (DE-588)4113937-9 |
title | Projection-based clustering through self-organization and swarm intelligence combining cluster analysis with the visualization of high-dimensional data |
title_alt | A system for projection-based clustering through self-organization and swarm intelligence |
title_auth | Projection-based clustering through self-organization and swarm intelligence combining cluster analysis with the visualization of high-dimensional data |
title_exact_search | Projection-based clustering through self-organization and swarm intelligence combining cluster analysis with the visualization of high-dimensional data |
title_full | Projection-based clustering through self-organization and swarm intelligence combining cluster analysis with the visualization of high-dimensional data Michael Christoph Thrun |
title_fullStr | Projection-based clustering through self-organization and swarm intelligence combining cluster analysis with the visualization of high-dimensional data Michael Christoph Thrun |
title_full_unstemmed | Projection-based clustering through self-organization and swarm intelligence combining cluster analysis with the visualization of high-dimensional data Michael Christoph Thrun |
title_short | Projection-based clustering through self-organization and swarm intelligence |
title_sort | projection based clustering through self organization and swarm intelligence combining cluster analysis with the visualization of high dimensional data |
title_sub | combining cluster analysis with the visualization of high-dimensional data |
topic | Dimensionsreduktion (DE-588)4224279-4 gnd Visualisierung (DE-588)4188417-6 gnd Wissensextraktion (DE-588)4546354-2 gnd Projektionsverfahren (DE-588)4175879-1 gnd Schwarmintelligenz (DE-588)4793676-9 gnd Cluster-Analyse (DE-588)4070044-6 gnd Hochdimensionale Daten (DE-588)7862975-5 gnd Selbstorganisation (DE-588)4126830-1 gnd Unüberwachtes Lernen (DE-588)4580265-8 gnd |
topic_facet | Dimensionsreduktion Visualisierung Wissensextraktion Projektionsverfahren Schwarmintelligenz Cluster-Analyse Hochdimensionale Daten Selbstorganisation Unüberwachtes Lernen Hochschulschrift |
url | https://doi.org/10.1007/978-3-658-20540-9 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030125284&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT thrunmichaelchristoph asystemforprojectionbasedclusteringthroughselforganizationandswarmintelligence AT thrunmichaelchristoph projectionbasedclusteringthroughselforganizationandswarmintelligencecombiningclusteranalysiswiththevisualizationofhighdimensionaldata |