Complexity dichotomies for counting problems, Volume 1, Boolean domain:
Complexity theory aims to understand and classify computational problems, especially decision problems, according to their inherent complexity. This book uses new techniques to expand the theory for use with counting problems. The authors present dichotomy classifications for broad classes of counti...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2017
|
Schlagworte: | |
Online-Zugang: | FHN01 BSB01 Volltext |
Zusammenfassung: | Complexity theory aims to understand and classify computational problems, especially decision problems, according to their inherent complexity. This book uses new techniques to expand the theory for use with counting problems. The authors present dichotomy classifications for broad classes of counting problems in the realm of P and NP. Classifications are proved for partition functions of spin systems, graph homomorphisms, constraint satisfaction problems, and Holant problems. The book assumes minimal prior knowledge of computational complexity theory, developing proof techniques as needed and gradually increasing the generality and abstraction of the theory. This volume presents the theory on the Boolean domain, and includes a thorough presentation of holographic algorithms, culminating in classifications of computational problems studied in exactly solvable models from statistical mechanics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 17 Nov 2017) |
Beschreibung: | 1 online resource (x, 461 pages) |
ISBN: | 9781107477063 |
DOI: | 10.1017/9781107477063 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044727955 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180124s2017 |||| o||u| ||||||eng d | ||
020 | |a 9781107477063 |c Online |9 978-1-107-47706-3 | ||
024 | 7 | |a 10.1017/9781107477063 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107477063 | ||
035 | |a (OCoLC)1017751799 | ||
035 | |a (DE-599)BVBBV044727955 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-92 |a DE-12 | ||
082 | 0 | |a 511.3/52 |2 23 | |
100 | 1 | |a Cai, Jin-yi |d 1961- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Complexity dichotomies for counting problems, Volume 1, Boolean domain |c Jin-Yi Cai, University of Wisconsin, Madison, Xi Chen, Columbia University, New York, New York |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2017 | |
300 | |a 1 online resource (x, 461 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 17 Nov 2017) | ||
520 | |a Complexity theory aims to understand and classify computational problems, especially decision problems, according to their inherent complexity. This book uses new techniques to expand the theory for use with counting problems. The authors present dichotomy classifications for broad classes of counting problems in the realm of P and NP. Classifications are proved for partition functions of spin systems, graph homomorphisms, constraint satisfaction problems, and Holant problems. The book assumes minimal prior knowledge of computational complexity theory, developing proof techniques as needed and gradually increasing the generality and abstraction of the theory. This volume presents the theory on the Boolean domain, and includes a thorough presentation of holographic algorithms, culminating in classifications of computational problems studied in exactly solvable models from statistical mechanics | ||
650 | 4 | |a Computational complexity | |
650 | 4 | |a Combinatorial enumeration problems | |
650 | 4 | |a Homomorphisms (Mathematics) | |
650 | 4 | |a Algebra, Boolean | |
700 | 1 | |a Chen, Xi |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107062375 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781107477063 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030124079 | ||
966 | e | |u https://doi.org/10.1017/9781107477063 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781107477063 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178221330071552 |
---|---|
any_adam_object | |
author | Cai, Jin-yi 1961- |
author_facet | Cai, Jin-yi 1961- |
author_role | aut |
author_sort | Cai, Jin-yi 1961- |
author_variant | j y c jyc |
building | Verbundindex |
bvnumber | BV044727955 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781107477063 (OCoLC)1017751799 (DE-599)BVBBV044727955 |
dewey-full | 511.3/52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/52 |
dewey-search | 511.3/52 |
dewey-sort | 3511.3 252 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781107477063 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02611nmm a2200433zc 4500</leader><controlfield tag="001">BV044727955</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180124s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107477063</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-47706-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781107477063</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107477063</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1017751799</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044727955</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-12</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/52</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cai, Jin-yi</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complexity dichotomies for counting problems, Volume 1, Boolean domain</subfield><subfield code="c">Jin-Yi Cai, University of Wisconsin, Madison, Xi Chen, Columbia University, New York, New York</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 461 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 17 Nov 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Complexity theory aims to understand and classify computational problems, especially decision problems, according to their inherent complexity. This book uses new techniques to expand the theory for use with counting problems. The authors present dichotomy classifications for broad classes of counting problems in the realm of P and NP. Classifications are proved for partition functions of spin systems, graph homomorphisms, constraint satisfaction problems, and Holant problems. The book assumes minimal prior knowledge of computational complexity theory, developing proof techniques as needed and gradually increasing the generality and abstraction of the theory. This volume presents the theory on the Boolean domain, and includes a thorough presentation of holographic algorithms, culminating in classifications of computational problems studied in exactly solvable models from statistical mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial enumeration problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homomorphisms (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra, Boolean</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xi</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107062375</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781107477063</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030124079</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781107477063</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781107477063</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044727955 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:00:31Z |
institution | BVB |
isbn | 9781107477063 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030124079 |
oclc_num | 1017751799 |
open_access_boolean | |
owner | DE-92 DE-12 |
owner_facet | DE-92 DE-12 |
physical | 1 online resource (x, 461 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO BSB_PDA_CBO |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Cai, Jin-yi 1961- Verfasser aut Complexity dichotomies for counting problems, Volume 1, Boolean domain Jin-Yi Cai, University of Wisconsin, Madison, Xi Chen, Columbia University, New York, New York Cambridge Cambridge University Press 2017 1 online resource (x, 461 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 17 Nov 2017) Complexity theory aims to understand and classify computational problems, especially decision problems, according to their inherent complexity. This book uses new techniques to expand the theory for use with counting problems. The authors present dichotomy classifications for broad classes of counting problems in the realm of P and NP. Classifications are proved for partition functions of spin systems, graph homomorphisms, constraint satisfaction problems, and Holant problems. The book assumes minimal prior knowledge of computational complexity theory, developing proof techniques as needed and gradually increasing the generality and abstraction of the theory. This volume presents the theory on the Boolean domain, and includes a thorough presentation of holographic algorithms, culminating in classifications of computational problems studied in exactly solvable models from statistical mechanics Computational complexity Combinatorial enumeration problems Homomorphisms (Mathematics) Algebra, Boolean Chen, Xi Sonstige oth Erscheint auch als Druck-Ausgabe 9781107062375 https://doi.org/10.1017/9781107477063 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Cai, Jin-yi 1961- Complexity dichotomies for counting problems, Volume 1, Boolean domain Computational complexity Combinatorial enumeration problems Homomorphisms (Mathematics) Algebra, Boolean |
title | Complexity dichotomies for counting problems, Volume 1, Boolean domain |
title_auth | Complexity dichotomies for counting problems, Volume 1, Boolean domain |
title_exact_search | Complexity dichotomies for counting problems, Volume 1, Boolean domain |
title_full | Complexity dichotomies for counting problems, Volume 1, Boolean domain Jin-Yi Cai, University of Wisconsin, Madison, Xi Chen, Columbia University, New York, New York |
title_fullStr | Complexity dichotomies for counting problems, Volume 1, Boolean domain Jin-Yi Cai, University of Wisconsin, Madison, Xi Chen, Columbia University, New York, New York |
title_full_unstemmed | Complexity dichotomies for counting problems, Volume 1, Boolean domain Jin-Yi Cai, University of Wisconsin, Madison, Xi Chen, Columbia University, New York, New York |
title_short | Complexity dichotomies for counting problems, Volume 1, Boolean domain |
title_sort | complexity dichotomies for counting problems volume 1 boolean domain |
topic | Computational complexity Combinatorial enumeration problems Homomorphisms (Mathematics) Algebra, Boolean |
topic_facet | Computational complexity Combinatorial enumeration problems Homomorphisms (Mathematics) Algebra, Boolean |
url | https://doi.org/10.1017/9781107477063 |
work_keys_str_mv | AT caijinyi complexitydichotomiesforcountingproblemsvolume1booleandomain AT chenxi complexitydichotomiesforcountingproblemsvolume1booleandomain |