Equivalents of the Riemann hypothesis, Volume 1, Arithmetic equivalents:
The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and g...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2017
|
Schriftenreihe: | Encyclopedia of Mathematics and its Applications
164 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs |
Beschreibung: | Title from publisher's bibliographic system (viewed on 10 Nov 2017) |
Beschreibung: | 1 online resource |
ISBN: | 9781108178228 |
DOI: | 10.1017/9781108178228 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044727879 | ||
003 | DE-604 | ||
005 | 20190408 | ||
007 | cr|uuu---uuuuu | ||
008 | 180124s2017 |||| o||u| ||||||eng d | ||
020 | |a 9781108178228 |c Online |9 978-1-108-17822-8 | ||
024 | 7 | |a 10.1017/9781108178228 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108178228 | ||
035 | |a (OCoLC)1020572413 | ||
035 | |a (DE-599)BVBBV044727879 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-92 |a DE-12 | ||
082 | 0 | |a 512.7/3 |2 23 | |
100 | 1 | |a Broughan, Kevin A. |d 1943- |e Verfasser |0 (DE-588)1137861630 |4 aut | |
245 | 1 | 0 | |a Equivalents of the Riemann hypothesis, Volume 1, Arithmetic equivalents |c Kevin Broughan |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2017 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of Mathematics and its Applications |v 164 | |
500 | |a Title from publisher's bibliographic system (viewed on 10 Nov 2017) | ||
520 | |a The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs | ||
600 | 1 | 4 | |a Riemann, Bernhard |d 1826-1866 |
650 | 4 | |a Riemann hypothesis | |
650 | 4 | |a Numbers, Prime | |
650 | 4 | |a Number theory | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107197046 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108178228 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030124003 | ||
966 | e | |u https://doi.org/10.1017/9781108178228 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108178228 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178221165445120 |
---|---|
any_adam_object | |
author | Broughan, Kevin A. 1943- |
author_GND | (DE-588)1137861630 |
author_facet | Broughan, Kevin A. 1943- |
author_role | aut |
author_sort | Broughan, Kevin A. 1943- |
author_variant | k a b ka kab |
building | Verbundindex |
bvnumber | BV044727879 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108178228 (OCoLC)1020572413 (DE-599)BVBBV044727879 |
dewey-full | 512.7/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/3 |
dewey-search | 512.7/3 |
dewey-sort | 3512.7 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781108178228 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02685nmm a2200433zcb4500</leader><controlfield tag="001">BV044727879</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190408 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180124s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108178228</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-17822-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108178228</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108178228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1020572413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044727879</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-12</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Broughan, Kevin A.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1137861630</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equivalents of the Riemann hypothesis, Volume 1, Arithmetic equivalents</subfield><subfield code="c">Kevin Broughan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of Mathematics and its Applications</subfield><subfield code="v">164</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 10 Nov 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Riemann, Bernhard</subfield><subfield code="d">1826-1866</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann hypothesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numbers, Prime</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107197046</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108178228</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030124003</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108178228</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108178228</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044727879 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:00:31Z |
institution | BVB |
isbn | 9781108178228 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030124003 |
oclc_num | 1020572413 |
open_access_boolean | |
owner | DE-92 DE-12 |
owner_facet | DE-92 DE-12 |
physical | 1 online resource |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO_Kauf ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of Mathematics and its Applications |
spelling | Broughan, Kevin A. 1943- Verfasser (DE-588)1137861630 aut Equivalents of the Riemann hypothesis, Volume 1, Arithmetic equivalents Kevin Broughan Cambridge Cambridge University Press 2017 1 online resource txt rdacontent c rdamedia cr rdacarrier Encyclopedia of Mathematics and its Applications 164 Title from publisher's bibliographic system (viewed on 10 Nov 2017) The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs Riemann, Bernhard 1826-1866 Riemann hypothesis Numbers, Prime Number theory Erscheint auch als Druck-Ausgabe 9781107197046 https://doi.org/10.1017/9781108178228 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Broughan, Kevin A. 1943- Equivalents of the Riemann hypothesis, Volume 1, Arithmetic equivalents Riemann, Bernhard 1826-1866 Riemann hypothesis Numbers, Prime Number theory |
title | Equivalents of the Riemann hypothesis, Volume 1, Arithmetic equivalents |
title_auth | Equivalents of the Riemann hypothesis, Volume 1, Arithmetic equivalents |
title_exact_search | Equivalents of the Riemann hypothesis, Volume 1, Arithmetic equivalents |
title_full | Equivalents of the Riemann hypothesis, Volume 1, Arithmetic equivalents Kevin Broughan |
title_fullStr | Equivalents of the Riemann hypothesis, Volume 1, Arithmetic equivalents Kevin Broughan |
title_full_unstemmed | Equivalents of the Riemann hypothesis, Volume 1, Arithmetic equivalents Kevin Broughan |
title_short | Equivalents of the Riemann hypothesis, Volume 1, Arithmetic equivalents |
title_sort | equivalents of the riemann hypothesis volume 1 arithmetic equivalents |
topic | Riemann, Bernhard 1826-1866 Riemann hypothesis Numbers, Prime Number theory |
topic_facet | Riemann, Bernhard 1826-1866 Riemann hypothesis Numbers, Prime Number theory |
url | https://doi.org/10.1017/9781108178228 |
work_keys_str_mv | AT broughankevina equivalentsoftheriemannhypothesisvolume1arithmeticequivalents |