Introduction to Banach spaces, Volume 2: analysis and probability
This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2018
|
Schriftenreihe: | Cambridge Studies in Advanced Mathematics
167 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the text and aid graduate students in functional analysis. The book will also be an invaluable reference volume for researchers in analysis. Volume 1 covers the basics of Banach space theory, operatory theory in Banach spaces, harmonic analysis and probability. The authors also provide an annex devoted to compact Abelian groups. Volume 2 focuses on applications of the tools presented in the first volume, including Dvoretzky's theorem, spaces without the approximation property, Gaussian processes, and more. Four leading experts also provide surveys outlining major developments in the field since the publication of the original French edition |
Beschreibung: | Originally published in French as Introduction à l’étude des espaces de Banach by Société Mathématique de France, 2004. - Title from publisher's bibliographic system (viewed on 10 Nov 2017) |
Beschreibung: | 1 Online-Ressource (xxx, 374 Seiten) |
ISBN: | 9781316677391 |
DOI: | 10.1017/9781316677391 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044727876 | ||
003 | DE-604 | ||
005 | 20210316 | ||
007 | cr|uuu---uuuuu | ||
008 | 180124s2018 |||| o||u| ||||||eng d | ||
020 | |a 9781316677391 |c Online |9 978-1-316-67739-1 | ||
024 | 7 | |a 10.1017/9781316677391 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316677391 | ||
035 | |a (OCoLC)1020587630 | ||
035 | |a (DE-599)BVBBV044727876 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-92 |a DE-12 |a DE-355 |a DE-83 | ||
082 | 0 | |a 515.732 |2 23 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
100 | 1 | |a Li, Daniel |e Verfasser |0 (DE-588)115053589X |4 aut | |
240 | 1 | 0 | |a Introduction à l’étude des espaces de Banach |
245 | 1 | 0 | |a Introduction to Banach spaces, Volume 2 |b analysis and probability |c Daniel Li, Hervé Queffélec ; translated from the French by Danièle Gibbons and Greg Gibbons |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2018 | |
300 | |a 1 Online-Ressource (xxx, 374 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge Studies in Advanced Mathematics |v 167 | |
500 | |a Originally published in French as Introduction à l’étude des espaces de Banach by Société Mathématique de France, 2004. - Title from publisher's bibliographic system (viewed on 10 Nov 2017) | ||
520 | |a This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the text and aid graduate students in functional analysis. The book will also be an invaluable reference volume for researchers in analysis. Volume 1 covers the basics of Banach space theory, operatory theory in Banach spaces, harmonic analysis and probability. The authors also provide an annex devoted to compact Abelian groups. Volume 2 focuses on applications of the tools presented in the first volume, including Dvoretzky's theorem, spaces without the approximation property, Gaussian processes, and more. Four leading experts also provide surveys outlining major developments in the field since the publication of the original French edition | ||
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Queffélec, Hervé |e Sonstige |0 (DE-588)1150536144 |4 oth | |
700 | 1 | |a Gibbons, Danièle |4 trl | |
700 | 1 | |a Gibbons, Greg |4 trl | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107162624 |
830 | 0 | |a Cambridge Studies in Advanced Mathematics |v 167 |w (DE-604)BV044781283 |9 167 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316677391 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030124000 | ||
966 | e | |u https://doi.org/10.1017/9781316677391 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316677391 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316677391 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178221165445120 |
---|---|
any_adam_object | |
author | Li, Daniel |
author2 | Gibbons, Danièle Gibbons, Greg |
author2_role | trl trl |
author2_variant | d g dg g g gg |
author_GND | (DE-588)115053589X (DE-588)1150536144 |
author_facet | Li, Daniel Gibbons, Danièle Gibbons, Greg |
author_role | aut |
author_sort | Li, Daniel |
author_variant | d l dl |
building | Verbundindex |
bvnumber | BV044727876 |
classification_rvk | SK 600 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316677391 (OCoLC)1020587630 (DE-599)BVBBV044727876 |
dewey-full | 515.732 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.732 |
dewey-search | 515.732 |
dewey-sort | 3515.732 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781316677391 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03279nmm a2200505zcb4500</leader><controlfield tag="001">BV044727876</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210316 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180124s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316677391</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-67739-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316677391</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316677391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1020587630</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044727876</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.732</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Daniel</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115053589X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Introduction à l’étude des espaces de Banach</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Banach spaces, Volume 2</subfield><subfield code="b">analysis and probability</subfield><subfield code="c">Daniel Li, Hervé Queffélec ; translated from the French by Danièle Gibbons and Greg Gibbons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxx, 374 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge Studies in Advanced Mathematics</subfield><subfield code="v">167</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally published in French as Introduction à l’étude des espaces de Banach by Société Mathématique de France, 2004. - Title from publisher's bibliographic system (viewed on 10 Nov 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the text and aid graduate students in functional analysis. The book will also be an invaluable reference volume for researchers in analysis. Volume 1 covers the basics of Banach space theory, operatory theory in Banach spaces, harmonic analysis and probability. The authors also provide an annex devoted to compact Abelian groups. Volume 2 focuses on applications of the tools presented in the first volume, including Dvoretzky's theorem, spaces without the approximation property, Gaussian processes, and more. Four leading experts also provide surveys outlining major developments in the field since the publication of the original French edition</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Queffélec, Hervé</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1150536144</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gibbons, Danièle</subfield><subfield code="4">trl</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gibbons, Greg</subfield><subfield code="4">trl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107162624</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge Studies in Advanced Mathematics</subfield><subfield code="v">167</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">167</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316677391</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030124000</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316677391</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316677391</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316677391</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044727876 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:00:31Z |
institution | BVB |
isbn | 9781316677391 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030124000 |
oclc_num | 1020587630 |
open_access_boolean | |
owner | DE-92 DE-12 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-92 DE-12 DE-355 DE-BY-UBR DE-83 |
physical | 1 Online-Ressource (xxx, 374 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge Studies in Advanced Mathematics |
series2 | Cambridge Studies in Advanced Mathematics |
spelling | Li, Daniel Verfasser (DE-588)115053589X aut Introduction à l’étude des espaces de Banach Introduction to Banach spaces, Volume 2 analysis and probability Daniel Li, Hervé Queffélec ; translated from the French by Danièle Gibbons and Greg Gibbons Cambridge Cambridge University Press 2018 1 Online-Ressource (xxx, 374 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge Studies in Advanced Mathematics 167 Originally published in French as Introduction à l’étude des espaces de Banach by Société Mathématique de France, 2004. - Title from publisher's bibliographic system (viewed on 10 Nov 2017) This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the text and aid graduate students in functional analysis. The book will also be an invaluable reference volume for researchers in analysis. Volume 1 covers the basics of Banach space theory, operatory theory in Banach spaces, harmonic analysis and probability. The authors also provide an annex devoted to compact Abelian groups. Volume 2 focuses on applications of the tools presented in the first volume, including Dvoretzky's theorem, spaces without the approximation property, Gaussian processes, and more. Four leading experts also provide surveys outlining major developments in the field since the publication of the original French edition Banach-Raum (DE-588)4004402-6 gnd rswk-swf Banach-Raum (DE-588)4004402-6 s DE-604 Queffélec, Hervé Sonstige (DE-588)1150536144 oth Gibbons, Danièle trl Gibbons, Greg trl Erscheint auch als Druck-Ausgabe 9781107162624 Cambridge Studies in Advanced Mathematics 167 (DE-604)BV044781283 167 https://doi.org/10.1017/9781316677391 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Li, Daniel Introduction to Banach spaces, Volume 2 analysis and probability Cambridge Studies in Advanced Mathematics Banach-Raum (DE-588)4004402-6 gnd |
subject_GND | (DE-588)4004402-6 |
title | Introduction to Banach spaces, Volume 2 analysis and probability |
title_alt | Introduction à l’étude des espaces de Banach |
title_auth | Introduction to Banach spaces, Volume 2 analysis and probability |
title_exact_search | Introduction to Banach spaces, Volume 2 analysis and probability |
title_full | Introduction to Banach spaces, Volume 2 analysis and probability Daniel Li, Hervé Queffélec ; translated from the French by Danièle Gibbons and Greg Gibbons |
title_fullStr | Introduction to Banach spaces, Volume 2 analysis and probability Daniel Li, Hervé Queffélec ; translated from the French by Danièle Gibbons and Greg Gibbons |
title_full_unstemmed | Introduction to Banach spaces, Volume 2 analysis and probability Daniel Li, Hervé Queffélec ; translated from the French by Danièle Gibbons and Greg Gibbons |
title_short | Introduction to Banach spaces, Volume 2 |
title_sort | introduction to banach spaces volume 2 analysis and probability |
title_sub | analysis and probability |
topic | Banach-Raum (DE-588)4004402-6 gnd |
topic_facet | Banach-Raum |
url | https://doi.org/10.1017/9781316677391 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT lidaniel introductionaletudedesespacesdebanach AT queffelecherve introductionaletudedesespacesdebanach AT gibbonsdaniele introductionaletudedesespacesdebanach AT gibbonsgreg introductionaletudedesespacesdebanach AT lidaniel introductiontobanachspacesvolume2analysisandprobability AT queffelecherve introductiontobanachspacesvolume2analysisandprobability AT gibbonsdaniele introductiontobanachspacesvolume2analysisandprobability AT gibbonsgreg introductiontobanachspacesvolume2analysisandprobability |