Carnivorous plants: physiology, ecology, and evolution
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford
Oxford University Press
2018
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xxxvi, 510 Seiten Illustrationen, Diagramme, Karten |
ISBN: | 9780198779841 9780198833727 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044723481 | ||
003 | DE-604 | ||
005 | 20190327 | ||
007 | t | ||
008 | 180120s2018 a||| |||| 00||| eng d | ||
020 | |a 9780198779841 |c hbk |9 978-0-19-877984-1 | ||
020 | |a 9780198833727 |9 978-0-19-883372-7 | ||
035 | |a (OCoLC)1021827710 | ||
035 | |a (DE-599)BVBBV044723481 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-355 |a DE-188 |a DE-703 |a DE-20 |a DE-12 | ||
084 | |a WI 4200 |0 (DE-625)148826: |2 rvk | ||
245 | 1 | 0 | |a Carnivorous plants |b physiology, ecology, and evolution |c edited by Aaron M. Ellison, Lubomír Adamec |
250 | |a First edition | ||
264 | 1 | |a Oxford |b Oxford University Press |c 2018 | |
300 | |a xxxvi, 510 Seiten |b Illustrationen, Diagramme, Karten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Fleischfressende Pflanzen |0 (DE-588)4017480-3 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Fleischfressende Pflanzen |0 (DE-588)4017480-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ellison, Aaron M. |d 1960- |0 (DE-588)173704840 |4 edt | |
700 | 1 | |a Adamec, Lubomír |4 edt | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030119699&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030119699 |
Datensatz im Suchindex
_version_ | 1804178213045272576 |
---|---|
adam_text | Contents
Preface xxiii
Editors and contributors XXV
Foreword XXXV
Daniel M. Joel
Part I Overview 1
1 Introduction: what is a carnivorous plant? 3
Aaron M. Ellison and Lubomir Adamec
1.1 The carnivorous syndrome - 3
1.2 Subsets of carnivorous plants 4
1.3 Other plants that share some carnivorous characteristics 5
1.4 The benefits and costs of carnivory 5
1.5 The future: learning from carnivorous plants 5
2 Biogeography and habitats of carnivorous plants 7
J. Stephen Brewer and Jan Schlauer
2.1 Introduction 7
2.2 Global biogeography 7
2.3 Habitat specificity defines regional distributions 13
2.3.1 Hypotheses concerning co-occurrence of carnivorous
and noncarnivorous plants 13
2.3.2 Regional patterns of co-occurrence 14
2.4 Mechanisms of coexistence in wet, unshaded, nutrient-poor soils 18
2.4.1 Niche complementarity 18
2.4.2 Fire-mediated stochasticity 19
2.5 Future research 20
3 Evolution of carnivory in angiosperms 22
Andreas Fleischmann, Jan Schlauer, Stephen A. Smith, and Thomas J. Givnish
3.1 Introduction 22
3.1.1 Evolution of carnivory 22
3.1.2 Origins of carnivory 24
3.1.3 Phylogeography and timing of origin 26
viii CONTENTS
3.2 Nepenthales 28
3.2.1 Drosophyllaceae 30
3.2.2 Dioncophyllaceae 30
3.2.3 Nepenthaceae 31
3.2.4 Droseraceae 32
3.3 Oxalidales 32
3.3.1 Cephalotaceae 32
3.4 Asteridae: Ericales 34
3.4.1 Roridulaceae 34
3.4.2 Sarraceniaceae 35
3.5 Asteridae: Lamíales 35
3.5.1 Byblidaceae 35
3.5.2 Plantaginaceae 35
3.5.3 Lentibulariaceae 35
3.6 Poales 38
3.6.1 Bromeliaceae 38
3.6.2 Eriocaulaceae 39
3.7 Loss of carnivory 40
3.8 Future research 41
Part II Systematics and Evolution of Carnivorous Plants 43
4 Systematics and evolution of Droseraceae 45
Andreas Fleischmann, Adam T. Cross, Robert Gibson, Paulo M. Gonella, and Kingsley W. Dixon
4.1 Introduction 45
4.2 Dionaea 47
4.2.1 Morphology and systematics 47
4.2.2 Carnivory 48
4.2.3 Ecology 48
4.3 Aldrovanda 48
4.3.1 Morphology and systematics 48
4.3.2 Distribution 49
4.3.3 Carnivory 49
4.3.4 Ecology and conservation 49
4.4 Drosera 50
4.4.1 Life history and morphology 50
4.4.2 Phylogeny and taxonomy 52
4.4.3 Distribution 53
4.4.4 Carnivory 54
4.4.5 Ecology and habitats 54
4.4.6 Conservation 56
4.5 Future research 57
CONTENTS ¡x
5 Systematics and evolution of Nepenthes 58
Charles Clarke, Jan Schlauer, Jonathan Moran, and Alastair Robinson
5.1 Introduction 58
5.2 Taxonomy and systematics 58
5.2.1 Determinants of change in Nepenthes taxonomy 61
5.2.2 Toward an improved taxonomy of Nepenthes 62
5.2.3 Best practices for describing new taxa in Nepenthes 64
5.3 Evolution in Nepenthes 65
5.3.1 Phylogeography 65
5.3.2 Drivers of diversification 66
5.3.3 Molecular evolution in Nepenthes 67
5.3.4 Infrageneric classification 67
5.4 Future research 69
6 Systematics and evolution of Lentibulariaceae: I. Pinguicula 70
Andreas Fleischmann and Aymeric Roccia
6.1 Introduction 70
6.2 Life history and morphology 70
6.2.1 Life-history strategies 70
6.2.2 Leaves 71
6.2.3 Inflorescences and flowers 72
6.2.4 Chromosome numbers 74
6.2.5 Clonal growth 74
6.3 Phylogeny and taxonomy 74
6.3.1 Phylogeography 74
6.3.2 Infrageneric classification 75
6.4 Distribution 76
6.4.1 Global patterns of diversity 76
6.4.2 México: the center of diversity 77
6.4.3 Diversity of other regions 78
6.5 Carnivory and other plant-insect interactions 78
6.5.1 Prey 78
6.5.2 Associated arthropods 78
6.6 Conservation 79
6.7 Future research 80
7 Systematics and evolution of Lentibulariaceae: II. Genlisea 81
Andreas Fleischmann
7.1 Life history and morphology 81
7.1.1 Leaves 81
7.1.2 Inflorescences and flowers 82
7.1.3 Fruits and seeds 83
x CONTENTS
7.2 Camivory 84
7.3 Phylogeny and evolution 84
7.3.1 Infrageneric classification 84
7.3.2 Phylogeography 84
7.3.3 Chromosome numbers 86
7.3.4 Genome size 86
7.4 Distribution 86
7.4.1 Global patterns of diversity 86
7.4.2 Brazil: the center of diversity 87
7.4.3 African species 87
7.5 Future research 88
8 Systematics and evolution of Lentibulariaceae: III. Utricularia 89
Richard W. Jobson, Paulo C. Baleeiro, and Cástor Guisande
8.1 Introduction 89
8.2 Phylogeny and taxonomy 89
8.2.1 Early classification and delimitation 89
8.2.2 Contemporary phylogenies 89
8.3 Evolution of life histories and morphology 92
8.3.1 Habitats and life history 92
8.3.2 Stolons, rhizoids, and leaves 92
8.3.3 Bladder-trap morphology 94
8.3.4 Bladder-trap evolution 96
8.3.5 Inflorescences, flowers, and pollen 96
8.3.6 Cytology 98
8.3.7 Fruits and seeds: structure and dispersal 98
8.4 Population dynamics 99
8.4.1 Population genetics 99
8.4.2 Pollination 99
8.4.3 Clonal growth 100
8.5 Contemporary biogeography and phylogeography 100
8.5.1 Global patterns of diversity 100
8.5.2 Phylogeography 101
8.5.3 Diversification and molecular rate acceleration 101
8.5.4 Diversification time and biogeographic shift in
subgenus Polypompholyx 103
8.6 Conservation issues 104
8.7 Future research 104
9 Systematics and evolution of Sarraceniaceae 105
Robert F.C. Naczi
9.1 Introduction 105
9.2 Taxonomy 105
9.2.1 Darlingtonia 105
9.2.2 Heliamphora 105
9.2.3 Sarracenia 107
CONTENTS xi
9.3 Phylogenetic relationships 110
9.3.1 Fossils 110
9.3.2 Morphological evidence for relationships of Sarraceniaceae 110
9.3.3 Molecular evidence for relationships of Sarraceniaceae 111
9.3.4 Molecular divergence time estimation 112
9.3.5 Interpreting morphology in light of molecular phylogeny 113
9.4 Evolutionary patterns and processes 115
9.4.1 Patterns 115
9.4.2 Chromosome number variation 115
9.4.3 Genetic diversity 115
9.4.4 Hybridization 116
9.4.5 Heterochrony 117
9.4.6 Evolution of the Sarraceniaceae pitcher 118
9.4.7 Historical biogeography 118
9.5 Future research 118
10 Systematics and evolution of small genera of carnivorous plants 120
Adam! Cross, Maria Paniw, André Vito Scatigna, Nick Kalfas, Bruce Anderson,
Thomas J. Givnish, and Andreas Fleischmann
10.1 Introduction 120
10.2 Brocchinia 120
10.2.1 Life history, morphology, and systematics 120
10.2.2 Carnivory - 121
10.2.3 Distribution, habitat, and conservation 123
10.3 Catopsis 124
10.3.1 Morphology and systematics 124
10.3.2 Carnivory 124
10.3.3 Distribution, habitat, and conservation 124
10.4 Paepalanthus 124
10.5 Drosophyllum 125
10.5.1 Life history, morphology, and systematics 125
10.5.2 Carnivory 125
10.5.3 Distribution, habitat, and conservation 126
10.6 Triphyophyiium 126
10.6.1 Life history, morphology, and systematics 126
10.6.2 Carnivory 127
10.6.3 Distribution, habitat, and conservation 128
10.7 Cephalotus 128
10.7.1 Morphology and systematics 128
10.7.2 Carnivory 129
10.7.3 Distribution, habitat, and conservation 129
10.8 Roridula 130
10.8.1 Morphology and systematics 130
10.8.2 Carnivory 130
10.8.3 Distribution and habitat 131
10.9 Byblis 131
10.9.1 Life history, morphology, and systematics 131
xii CONTENTS
10.9.2 Camivory 132
10.9.3 Distribution, habitat, and conservation 132
10.10 Philcoxia 133
10.10.1 Morphology and systematics 133
10.10.2 Carnivory 133
10.10.3 Distribution, habitat, and conservation 133
10.11 Future research 134
11 Carnivorous plant genomes 135
Tanya Renner, Tianying Lan, Kimberly M. Farr, Enrique ibarra-Laclette, Luis Herrera-Estrella,
Stephan C. Schuster, Mitsuyasu Hasebe, Kenji Fukushima, and Victor A. Albert
11.1 Introduction: flowering plant genomes with a twist 135
11.1.1 Nuclear genome sequencing and assembly efforts
for carnivorous plants 136
11.2 Genome evolution 137
11.2.1 Utricularia gibba has a dynamic genome 137
11.2.2 Selection for genome size reduction in the Lentibulariaceae 139
11.2.3 Adaptive evolution through gene duplication is largely
limited to small-scale events in Cephalotus follicularis 139
11.3 Contribution of whole gene duplications to functional diversity 139
11.4 The adaptive roles of small-scale gene duplication events 140
11.4.1 Utricularia gibba small-scale gene duplication events 140
11.4.2 Small-scale gene duplication events in Cephalotus follicularis 141
11.5 Evolutionary rates and gene loss in Utricularia gibba 144
11.5.1 ROS scavenging and DNA repair 144
11.5.2 Production of diploid gametes and the evolution of
Utricularia gibba polyploidy 145
11.5.3 Defense response 145
11.5.4 Essential nutrient transport and enzyme activity 146
11.5.5 Auxin response 146
11.5.6 Root and shoot morphogenesis and the transition
to the aquatic habit 146
11.6 Genomic insights into leaf patterning in Cephalotus follicularis 147
11.7 Evolutionary convergence of digestive enzymes 148
11.8 The Utricularia gibba genome provides a look at complete
plant centromeres 149
11.9 Additional nuclear genomes and transcriptomes of carnivorous plants 151
11.10 Organellar genomes 152
11.11 Future research 152
Part III Physiology, Form, and Function 155
12 Attraction of prey 157
John D. Horner, Bartosz J. Pfachno, Ulrike Bauer, and Bruno Di Giusto
12.1 Introduction 157
12.2 Visual cues 157
CONTENTS xiii
12.2.1 Reflectance and absorption patterns 157
12.2.2 Red color as an attractant 158
12.3 Nectar rewards 159
12.4 Olfactory cues 160
12.5 Acoustic attraction 163
12.6 Prey attraction in carnivorous plants with aquatic traps 163
12.7 Synergistic effects of multiple attractants 163
12.8 Temporal variation of attractive cues 163
12.9 Is production of attractants a crucial trait for carnivory? 164
12.10 Cost of attractants 164
12.11 Future research 165
13 Functional anatomy of carnivorous traps 167
Bartosz J. Piachno and Lyudmila E. Muravnik
13.1 Introduction 167
13.2 Nectar glands 167
13.2.1 Nectaries of the Sarraceniaceae 167
13.2.2 Nectaries of Cephalotus 168
13.2.3 Nectaries of Nepenthes 168
13.3 Slippery surfaces of pitcher-plant traps and bromeliad tanks 169
13.3.1 Epicuticular wax crystals 170
13.3.2 Teeth, folds, and ridges 170
13.3.3 Directional features 170
13.4 Sticky glands of adhesive traps 170
13.4.1 Mucilage glands of carnivorous Lamiales 171
13.4.2 Mucilage glands of adhesively trapping Caryophyllales 171
13.4.3 Resin emergences of carnivorous Ericales 172
13.4.4 Glands of other plants that entrap insects 172
13.5 Suction traps and eel traps of the Lentibulariaceae 172
13.5.1 The bladders of Utricularia 172
13.5.2 The eel trap of Genlisea 174
13.6 Fecal traps 176
13.7 Causes of prey death 177
13.8 Digestive and absorptive glands 177
13.8.1 The terminal element and enzyme localization
in digestive glands 177
13.8.2 Nutrient uptake and transport in the middle
and basal elements 178
13.9 Future research 179
14 Motile traps 180
Simon Poppinga, Ulrike Bauer, Thomas Speck, and Alexander G. Volkov
14.1 Introduction 180
14.2 Active motile traps 180
14.2.1 Snap-traps 180
14.2.2 Motile adhesive traps 185
14.2.3 Suction traps 188
xiv
CONTENTS
14.3 The passive motile trap of Nepenthes gracilis 191
14.4 Future research 192
15 Non-motile traps 194
Ulrike Bauer, Reinhard letter, and Simon Poppinga
15.1 Introduction 194
15.2 Sticky traps and trap glues 195
15.3 Anti-adhesive surfaces 197
15.3.1 Wax blooms 197
15.3.2 Cuticular folds 199
15.3.3 Directional (anisotropic) surfaces 200
15.3.4 Wettable (superhydrophilic) surfaces 201
15.4 Mechanical obstructions 203
15.5 Ecological implications of wetness-activated trapping mechanisms 203
15.6 Future research 205
16 Biochemistry of prey digestion and nutrient absorption 207
lldikó Matusíková, Andrej Pavlovic, and Tanya Renner
16.1 Introduction 207
16.2 Composition of the digestive fluid 207
16.2.1 Proteases 208
16.2.2 Phosphatases 211
16.2.3 Chitinases 211
16.2.4 Nucleases 212
16.2.5 Carbohydrate-digesting enzymes 213
16.3 Regulation of enzyme release and activity in traps 213
16.3.1 Enzyme induction 213
16.3.2 Combinations of constitutive and inducible
production of enzymes 214
16.3.3 Enzyme activity 216
16.4 Evolution of digestive enzymes and their regulatory mechanisms 216
16.4.1 Subfunctionalization of class I chitinases for
defense and digestion 217
16.4.2 Evolution and expression of class III chitinases 218
16.4.3 Evolution and expression of class V 0-1,3-glucanases 219
16.4.4 Evolution and specificity of proteases 219
16.5 Future research 219
17 Mineral nutrition of terrestrial carnivorous plants 221
LubomirAdamecandAndrej Pavlovic
17.1 Introduction 221
17.2 Ecophysiological traits in stressful habitats 221
17.3 Nutrient content and stoichiometry 222
17.4 Mineral nutrient economy 223
17.4.1 Mineral nutrient uptake from prey 223
17.4.2 Mechanism of nutrient uptake from prey 224
CONTENTS xv
17.4.3 Mineral nutrient reutilization 224
17.4.4 Leaf-root nutrient interaction 224
17.4.5 Seasonal nutrient gain 225
17.5 Growth effects 226
17.6 Effects of mineral nutrition on expression of carnivorous traits 227
17.7 Mineral nutrition of Nepenthes 228
17.8 Nutritional cost/benefit relationships of carnivory 230
17.9 Future research 230
18 Why are plants carnivorous? Cost/benefit analysis, whole-plant growth,
and the context-specific advantages of botanical carnivory 232
Thomas J. Givnish, K. William Sparks, Steven J. Hunter, and Andrej Pavlovic
18.1 Introduction 232
18.2 The cost/benefit model for the evolution of plant carnivory 233
18.2.1 The benefits of carnivory 234
18.2.2 Benefits vary with environmental conditions 234
18.3 Predictions of the cost/benefit model 236
18.3.1 Carnivory is most likely to evolve and be favored
ecologically in habitats that are sunny, moist,
and nutrient poor 236
18.3.2 Epiphytism works against carnivory and favors
myrmecotrophy 236
18.3.3 Optimal investment in carnivory in terrestrial plants
should increase toward the sunniest, moistest, most
nutrient-poor sites 236
18.3.4 Optimal trap mechanism and form should depend on
tradeoffs associated with environmental conditions,
prey type, and trap type 237
18.3.5 Carnivorous plants should have low photosynthetic
rates and RGRs 237
18.3.6 Rainy, humid conditions or wet soils favor carnivores
by lowering the costs of glandular secretion or permitting
passive accumulation of rainwater 237
18.3.7 Possession of defensive glandular hairs should facilitate
the evolution of carnivory 237
18.3.8 Fire over infertile substrates favors carnivory 237
18.3.9 The ability of carnivorous plants to grow on bare rock
or sterile sands must have evolved in stepwise fashion 238
18.3.10 Anoxic or toxic soils should favor carnivory on open,
moist sites 238
18.3.11 Growth co-limitation by multiple nutrients may favor
the paradoxical increase in root investment seen
in carnivorous plants that have recently captured prey 240
18.3.12 Paradoxically, in aquatic carnivorous Utricularia, harder,
more fertile waters should favor greater investment in traps 241
18.3.13 Soil anoxia or extreme infertility militate against tall,
woody plants and may restrict carnivory to short,
mostly herbaceous plants
241
xvi CONTENTS
18.4 Assumptions of the cost/benefit model 242
18.4.1 Costs of carnivory 242
18.4.2 Allocation to carnivorous structures 242
18.4.3 Prey capture increases with allocation to carnivory 244
18.4.4 Benefits of carnivory 245
18.4.5 Plateauing benefits of carnivory 245
18.4.6 Growth advantage of carnivorous plants 245
18.5 Tests of predictions of the cost/benefit model 246
18.5.1 Botanical carnivory is most likely in nutrient-poor,
sunny, and moist habitats 246
18.5.2 Carnivorous epiphytes should be rare but myrmecophytic
epiphytes should be more common 247
18.5.3 Investment in carnivory by terrestrial plants should increase
toward the sunniest, moistest, most nutrient-poor sites 248
18.5.4 Form and function of traps depends on tradeoffs associated
with environmental conditions and prey type 250
18.5.5 Carnivorous plants should have low photosynthetic
rates and RGR 251
18.5.6 Rainy, humid conditions or wet soils favor carnivorous
plants by lowering the costs of glandular secretion
or allowing passive accumulation of rainwater 252
18.5.7 Possession of defensive glandular hairs facilitates
the evolution of carnivory 252
18.5.8 Fire over infertile soils favors carnivorous plants 253
18.5.9 Gradual evolution of carnivory is essential in extreme habitats 253
18.5.10 Anoxic or toxic soils should favor carnivory on open,
moist sites 253
18.5.11 Co-limitation of growth by multiple nutrients may favor
the paradoxical increase in root investment by carnivorous
plants that recently have captured prey 253
18.5.12 Harder, more fertile waters should favor greater
investment in traps by Utricularia 254
18.5.13 Soil anoxia or extreme infertility makes tall, woody
carnivores impossible 254
18.6 Future research 254
19 Ecophysiology of aquatic carnivorous plants 256
Lubomir Adamec
19.1 Introduction 256
19.2 Habitat characteristics 256
19.3 Morphology 257
19.4 Growth, mineral nutrition, photosynthesis, and respiration 258
19.4.1 Growth 258
19.4.2 Mineral nutrition 259
19.4.3 Photosynthesis and respiration 261
19.5 Trap ecophysiology of aquatic Utricularia 262
19.5.1 Water flow 262
19.5.2 Prey digestion 264
CONTENTS xvii
19.5.3 The role of trap commensals 265
19.5.4 Oxygen regime and trap respiration 266
19.6 Regulation of investment in carnivory 267
19.7 Turions 268
19.8 Future research 269
20 Biotechnology with carnivorous plants 270
Laurent Legendre and Douglas W. Darnowski
20.1 Introduction 270
20.2 Activity and production of pharmaceutical substances 270
20.2.1 Droseraceae and Nepenthaceae 270
20.2.2 Sarraceniaceae 276
20.2.3 Lentibulariaceae 276
20.3 Mass propagation 277
20.3.1 In vitro culture 277
20.3.2 Hydroponics 279
20.4 Industrial products inspired by botanical carnivory 279
20.4.1 Production tools for recombinant proteins 279
20.4.2 Biomimetic materials 280
20.5 Future research 281
Part IV Ecology 283
21 Prey selection and specialization by carnivorous plants 285
Douglas Darnowski, Ulrike Bauer, Marcos Méndez, John Horner, and Bartosz J. Plachno
21.1 Introduction 285
21.2 Prey selection by carnivorous plants with motile traps 285
21.2.1 Aldrovanda 285
21.2.2 Dionaea 286
21.2.3 Utricularia 286
21.2.4 Drosera 288
21.3 Prey selection by carnivorous plants with non-motile traps 289
21.3.1 Genlisea 289
21.3.2 Philcoxia 290
21.3.3 Drosophyllum 290
21.3.4 Pinguicula 290
21.3.5 Nepenthes 291
21.3.6 Sarracenia 292
21.3.7 Brocchinia,Catopsis,Cephalotus, and Heliamphora 293
21.4 Future research 293
22 Reproductive biology and pollinator-prey conflicts 294
Adam T. Cross, Arthur R. Davis, Andreas Fleischmann, John D. Horner, Andreas Jürgens,
David J. Merritt, Gillian L. Murza, and Shane R. Turner
22.1 Introduction 294
22.2 Pollinator-prey conflict 295
xviii CONTENTS
22.2.1 Autogamy 295
22.2.2 Specialization on pollinators and prey 296
22.2.3 Carnivorous traps that mimic flowers 297
22.2.4 Spatial separation of flowers and traps 297
22.2.5 Temporal separation of flowering and trapping 298
22.3 Pollinator-prey conflict as a function of trap type 298
22.3.1 Sticky traps 298
22.3.2 Pitfall traps 300
22.3.3 The suction traps of Utricularia 301
22.3.4 Snap-traps 302
22.3.5 Eel traps 302
22.4 Seed morphology, germination biology, and seed dormancy 302
22.4.1 Bromeliaceae 306
22.4.2 Eriocaulaceae 307
22.4.3 Droseraceae 307
22.4.4 Drosophyllaceae 308
22.4.5 Nepenthaceae 308
22.4.6 Dioncophyllaceae 309
22.4.7 Cephalotaceae 309
22.4.8 Roridulaceae 309
22.4.9 Sarraceniaceae 309
22.4.10 Byblidaceae 310
22.4.11 Plantaginaceae 310
22.4.12 Lentibulariaceae 311
22.5 Conservation seed banking 311
22.6 Future research 312
23 Commensals of Nepenthes pitchers 314
Leonora S. Bittleston
23.1 Introduction 314
23.2 History of Nepenthes inquiline studies 314
23.3 Physical properties of Nepenthes pitchers 324
23.4 Nepenthes inquilines and their functional roles 324
23.4.1 Arthropods, vermiform organisms, and rotifers 324
23.4.2 Fungi, protozoa, algae, and bacteria 325
23.4.3 Other inquilines 327
23.4.4 Inquiline effects on hosts 327
23.5 Geographic patterns 327
23.5.1 Patterns within and among pitchers 327
23.5.2 Comparisons with surrounding habitats 330
23.5.3 Inquilines of Nepenthes and Sarracenia 330
23.6 Future research 332
24 Pitcher-plant communities as model systems for addressing
fundamental questions in ecology and evolution 333
Thomas E. Miller, William E. Bradshaw, and Christina M. Holzapfe!
24.1 Introduction 333
24.2 Natural history of Sarracenia and its inquilines 333
CONTENTS xix
24.2.1 Prey capture 334
24.2.2 Microbes 334
24.2.3 Bacterivores 334
24.2.4 Wyeomyia smithii 334
24.2.5 Other Dipterans 336
24.2.6 Inquiline dispersal 336
24.2.7 Non-aquatic associates: moths 336
24.2.8 Pollinators 336
24.2.9 Spiders 337
24.3 Sarracenia purpurea and its associates as a model ecological system 337
24.3.1 Mutualism between Sarracenia purpurea
and its aquatic inquilines 337
24.3.2 Consumer versus resource control of communities 338
24.3.3 Testing theories of succession 338
24.3.4 Dispersal and metacommunities 339
24.3.5 Biogeography at the scale of a community 340
24.3.6 Evolution in a community context 341
24.4 Wyeomyia as a model system for inquiline species 342
24.4.1 Density-dependent selection 342
24.4.2 Evolution of protandry 342
24.4.3 The evolution of diapause and photoperiodism
in Wyeomyia smithii 343
24.4.4 Climatic change as a selective force driving evolution 345
24.4.5 Genetic architecture of adaptive evolution 346
24.5 Future research 347
25 The Utricularia-associated microbiome: composition, function, and ecology 349
Dagmara Sirová, Jifí Bárta, Jakub Borovec, and Jaroslav Vrba
25.1 Introduction 349
25.2 The environment of the trap lumen 350
25.3 Prokaryotes 351
25.4 Eukaryotes 353
25.4.1 Algae 353
25.4.2 Fungi 354
25.4.3 Protozoa 354
25.4.4 Are metazoa capable of long-term survival
in Utricularia traps? 355
25.5 Periphyton 355
25.6 Effects of microbial activity on Utricularia growth 356
25.7 Future research 357
26 Nutritional mutualisms of Nepenthes and Roridula 359
Jonathan A. Moran, Bruce Anderson, Lijin Chin, Melinda Greenwood, and Charles Clarke
26.1 Introduction 359
26.2 Nepenthes and Formicidae 359
26.2.1 Nepenthes rafflesiana 359
26.2.2 Nepenthes bicalcarata 361
XX CONTENTS
263 Nepenthes and vertebrates 362
263.1 Types of interactions with vertebrates 362
263.2 Highland Nepenthes and terrestrial mammals 363
2633 Nepenthes hemsleyana and bats 366
263.4 The future 367
26.4 Other potential mutualists with Nepenthes 367
26.4.1 Nepenthes albomarginata 367
26.4.2 Nepenthes ampullaria 368
26.5 Roridula and Hemiptera 369
26.5.1 Digestive mutualism 369
26.5.2 Other symbionts 370
26.6 Future research 371
Part V The Future of Carnivorous Plants 373
27 Conservation of carnivorous plants 375
Charles Clarke, Adam Cross, and Barry Rice
27.1 Introduction 375
27.2 The conservation status of carnivorous plants 376
273 Key threats 377
27.4 Carnivorous plant conservation in North America 378
27.4.1 Threats 378
27.4.2 Species at risk 379
27.43 Expert assessments 379
27.4.4 Conservation and management of threatened species 380
27.4.5 The role of horticulture 380
27.5 Conservation of Nepenthes in Southeast Asia 381
27.5.1 Poaching 381
27.5.2 Habitat fragmentation 381
27.53 Narrow endemics 382
27.5.4 Taxonomic fragmentation 383
27.6 Conservation of Australian carnivorous plants 384
27.6.1 The Southwest Australian floristic region 385
27.6.2 Diversity 385
27.63 Threats 385
27.6.4 Conservation and management 387
27.7 Future research and conservation prospects 387
28 Estimating the exposure of carnivorous plants to rapid climatic change 389
Matthew C. Fitzpatrick and Aaron M. Ellison
28.1 Introduction 389
28.2 The basics of species distribution models 389
28.2.1 Challenging species distribution models with sparse
or rare species 390
28.2.2 Critiques of species distribution models 390
CONTENTS xxi
28.3 Characteristics of carnivorous plants that challenge SDMs 391
28.3.1 Rarity and sparse distributions 391
28.3.2 Habitat specialization 391
28.3.3 Are carnivorous plant distributions constrained by climate? 392
28.4 Species distribution models for carnivorous plants and other rare species 392
28.4.1 Ensembles of small models 393
28.4.2 Controlling complexity and over-fitting 393
28.4.3 Estimating bioclimatic velocity 393
28.5 Modeling exposure of carnivorous plants to climatic change 394
28.5.1 Species occurrence data 394
28.5.2 Climate data 394
28.5.3 Species distribution modeling 395
28.5.4 Ensembles of small models (ESM) 395
28.5.5 Model projections, bioclimatic velocity, and exposure metrics 395
28.6 Results 396
28.6.1 Occurrence data for carnivorous plants 396
28.6.2 Performance of species distribution models for
carnivorous plants 396
28.6.3 Vulnerability of carnivorous plants to climatic change 396
28.7 Discussion 402
28.8 Future research 407
29 The future of research with carnivorous plants 408
Aaron M. Ellison and Lubomir Adamec
29.1 Phylogeny, evolution, and convergence 408
29.2 Field observations and experiments 409
29.3 Plant-animal and plant-microbe interactions 409
29.4 Comparisons with noncarnivorous plants 409
Appendix 411
References 435
Acknowledgments 493
Taxonomic Index 497
Subject index 507
|
any_adam_object | 1 |
author2 | Ellison, Aaron M. 1960- Adamec, Lubomír |
author2_role | edt edt |
author2_variant | a m e am ame l a la |
author_GND | (DE-588)173704840 |
author_facet | Ellison, Aaron M. 1960- Adamec, Lubomír |
building | Verbundindex |
bvnumber | BV044723481 |
classification_rvk | WI 4200 |
ctrlnum | (OCoLC)1021827710 (DE-599)BVBBV044723481 |
discipline | Biologie |
edition | First edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01527nam a2200361 c 4500</leader><controlfield tag="001">BV044723481</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190327 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180120s2018 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198779841</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-19-877984-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198833727</subfield><subfield code="9">978-0-19-883372-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1021827710</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044723481</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-12</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WI 4200</subfield><subfield code="0">(DE-625)148826:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Carnivorous plants</subfield><subfield code="b">physiology, ecology, and evolution</subfield><subfield code="c">edited by Aaron M. Ellison, Lubomír Adamec</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxvi, 510 Seiten</subfield><subfield code="b">Illustrationen, Diagramme, Karten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fleischfressende Pflanzen</subfield><subfield code="0">(DE-588)4017480-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fleischfressende Pflanzen</subfield><subfield code="0">(DE-588)4017480-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ellison, Aaron M.</subfield><subfield code="d">1960-</subfield><subfield code="0">(DE-588)173704840</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adamec, Lubomír</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030119699&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030119699</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV044723481 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:00:23Z |
institution | BVB |
isbn | 9780198779841 9780198833727 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030119699 |
oclc_num | 1021827710 |
open_access_boolean | |
owner | DE-11 DE-355 DE-BY-UBR DE-188 DE-703 DE-20 DE-12 |
owner_facet | DE-11 DE-355 DE-BY-UBR DE-188 DE-703 DE-20 DE-12 |
physical | xxxvi, 510 Seiten Illustrationen, Diagramme, Karten |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Oxford University Press |
record_format | marc |
spelling | Carnivorous plants physiology, ecology, and evolution edited by Aaron M. Ellison, Lubomír Adamec First edition Oxford Oxford University Press 2018 xxxvi, 510 Seiten Illustrationen, Diagramme, Karten txt rdacontent n rdamedia nc rdacarrier Fleischfressende Pflanzen (DE-588)4017480-3 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Fleischfressende Pflanzen (DE-588)4017480-3 s DE-604 Ellison, Aaron M. 1960- (DE-588)173704840 edt Adamec, Lubomír edt Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030119699&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Carnivorous plants physiology, ecology, and evolution Fleischfressende Pflanzen (DE-588)4017480-3 gnd |
subject_GND | (DE-588)4017480-3 (DE-588)4143413-4 |
title | Carnivorous plants physiology, ecology, and evolution |
title_auth | Carnivorous plants physiology, ecology, and evolution |
title_exact_search | Carnivorous plants physiology, ecology, and evolution |
title_full | Carnivorous plants physiology, ecology, and evolution edited by Aaron M. Ellison, Lubomír Adamec |
title_fullStr | Carnivorous plants physiology, ecology, and evolution edited by Aaron M. Ellison, Lubomír Adamec |
title_full_unstemmed | Carnivorous plants physiology, ecology, and evolution edited by Aaron M. Ellison, Lubomír Adamec |
title_short | Carnivorous plants |
title_sort | carnivorous plants physiology ecology and evolution |
title_sub | physiology, ecology, and evolution |
topic | Fleischfressende Pflanzen (DE-588)4017480-3 gnd |
topic_facet | Fleischfressende Pflanzen Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030119699&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ellisonaaronm carnivorousplantsphysiologyecologyandevolution AT adameclubomir carnivorousplantsphysiologyecologyandevolution |