Combinatorial optimization: theory and algorithms
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Springer
[2018]
|
Ausgabe: | sixth edition |
Schriftenreihe: | Algorithms and combinatorics
volume 21 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XXI, 698 Seiten Diagramme 25 cm |
ISBN: | 9783662560389 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV044722203 | ||
003 | DE-604 | ||
005 | 20210623 | ||
007 | t | ||
008 | 180119s2018 |||| |||| 00||| eng d | ||
015 | |a 11,N46 |2 dnb | ||
020 | |a 9783662560389 |c hbk. |9 978-3-662-56038-9 | ||
035 | |a (OCoLC)1020568382 | ||
035 | |a (DE-599)BVBBV044722203 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-91G |a DE-523 |a DE-634 |a DE-M158 |a DE-11 |a DE-739 |a DE-188 |a DE-355 |a DE-20 |a DE-384 |a DE-706 | ||
082 | 0 | |a 519.64 |2 22/ger | |
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a 65K05 |2 msc | ||
084 | |a 68R10 |2 msc | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 913f |2 stub | ||
084 | |a 90C27 |2 msc | ||
100 | 1 | |a Korte, Bernhard |d 1938- |0 (DE-588)139321802 |4 aut | |
245 | 1 | 0 | |a Combinatorial optimization |b theory and algorithms |c Bernhard Korte, Jens Vygen |
250 | |a sixth edition | ||
264 | 1 | |a Berlin |b Springer |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a XXI, 698 Seiten |b Diagramme |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Algorithms and combinatorics |v volume 21 | |
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a Kombinatorische Optimierung |0 (DE-588)4031826-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kombinatorische Optimierung |0 (DE-588)4031826-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Vygen, Jens |d 1967- |0 (DE-588)14204086X |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-662-56039-6 |
830 | 0 | |a Algorithms and combinatorics |v volume 21 |w (DE-604)BV000617357 |9 21 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030118450&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030118450 |
Datensatz im Suchindex
_version_ | 1804178211085484032 |
---|---|
adam_text | Table of Contents 1 Introduction .................................................................................... 1 1.1 Enumeration...................................................................................... 2 1.2 Running Time of Algorithms ........................................................ 5 1.3 Linear Optimization Problems........................................................ 8 1.4 Sorting.............................................................................................. 9 Exercises.................................................................................................... 11 References.................................................................................................. 12 2 Graphs ..................................................................................................... 2.1 Basic Definitions ............................................................................. 2.2 Trees, Circuits, and Cuts ................................................................ 2.3 Connectivity .................................................................................... 2.4 Eulerian and Bipartite Graphs ........................................................ 2.5 Planarity .......................................................................................... 2.6 Planar Duality ................................................................................. Exercises....................................................................................................
References............................................................................................. 15 15 19 26 33 36 43 46 49 3 Linear Programming ............................................................................. 3.1 Polyhedra ........................................................................................ 3.2 The Simplex Algorithm .................................................................. 3.3 Implementation of the Simplex Algorithm .................................... 3.4 Duality ............................................................................................ 3.5 Convex Hulls and Poly topes .......................................................... Exercises.................................................................................................... References.................................................................................................. 53 54 58 62 65 69 70 72 4 Linear Programming Algorithms ........................................................ 4.1 Size of Vertices and Faces .............................................................. 4.2 Continued Fractions ....................................................................... 4.3 Gaussian Elimination ..................................................................... 4.4 The Ellipsoid Method ..................................................................... 4.5 Khachiyan’s Theorem....................................................................... 75 75 78 81 84 90 XVII
XVIII Table of Contents 4.6 Separation and Optimization .......................................................... 93 Exercises.................................................................................................... 99 References................................................................................................... 101 5 Integer Programming...............................................................................103 5.1 The Integer Hull of a Polyhedron.....................................................105 5.2 Unimodular Transformations ............................................................ 109 5.3 Total Dual Integrality ....................................................................... Ill 5.4 Totally Unimodular Matrices ............................................................ 115 5.5 Cutting Planes ...................................................................................120 5.6 Lagrangean Relaxation ......................................................................124 Exercises..................................................................................................... 126 References....................................................................................................129 6 Spanning TVees and Arborescences .......................................................133 6.1 Minimum Spanning Trees ................................................................ 134 6.2 Minimum Weight Arborescences .....................................................140 6.3 Polyhedral Descriptions
....................................................................144 6.4 Packing Spanning Trees and Arborescences ....................................147 Exercises..................................................................................................... 151 References................................................................................................... 155 7 Shortest Paths .......................................................................................... 159 7.1 Shortest Paths From One Source .....................................................160 7.2 Shortest Paths Between All Pairsof Vertices ................................... 165 7.3 Minimum Mean Cycles ....................................................................167 7.4 Shallow-Light Trees ......................................................................... 169 Exercises..................................................................................................... 171 References....................................................................................................173 8 Network Flows.......................................................................................... 177 8.1 Max-Flow-Min-Cut Theorem .......................................................... 178 8.2 Menger’s Theorem............................................................................. 182 8.3 The Edmonds-Karp Algorithm.......................................................... 184 8.4 Dime’s, Karzanov’s, and Fujishige’s Algorithm................................186 8.5 The
Goldberg-Tarjan Algorithm........................................................ 190 8.6 Gomory-Hu Trees...............................................................................194 8.7 The Minimum Capacity of a Cut in an Undirected Graph........... 201 Exercises..................................................................................................... 203 References................................................................................................... 210 9 Minimum Cost Flows...............................................................................215 9.1 Problem Formulation ....................................................................... 215 9.2 An Optimality Criterion ............................................... 218 9.3 Minimum Mean Cycle-Cancelling Algorithm................................. 220 9.4 Successive Shortest Path Algorithm .................................................223 9.5 Orlin’s Algorithm.............................................................................. 227
Table of Contents XIX 9.6 The Network Simplex Algorithm .................................................... 232 9.7 Flows Over Time............................. 236 Exercises.....................................................................................................238 References................................................................................................... 241 10 Maximum Matchings .................................................... 245 10.1 Bipartite Matching .......................................................................... 246 10.2 The Tutte Matrix............................................................... 248 10.3 Tutte’s Theorem................................................................................ 250 10.4 Ear-Decompositions of Factor-Critical Graphs ............................... 253 10.5 Edmonds’ Matching Algorithm........................................................259 Exercises................................................................... 269 References................................................................................................... 273 11 Weighted Matching.................................................................................. 277 11.1 The Assignment Problem ................................................................. 278 11.2 Outline of the Weighted Matching Algorithm ............................... 280 11.3 Implementation of the Weighted Matching Algorithm .................. 283 11.4 Postoptimality
.................................................................................. 296 11.5 The Matching Polytope ................................................................... 297 Exercises...................................................................................... 300 References................................................................... 302 12 ¿-Matchings and Г-Joins.........................................................................305 12.1 ¿-Matchings........................................................................................305 12.2 Minimum Weight Г-Joins................................................................. 309 12.3 Г-Joins and Г-Cuts.......................................................................... 313 12.4 The Padberg-Rao Theorem.......................... 317 Exercises............................................................................................. 319 References................................................................................................... 323 13 Matroids ...................................................................................................325 13.1 Independence Systems and Matroids .............................................. 325 13.2 Other Matroid Axioms .....................................................................329 13.3 Duality ............................................................................................. 334 13.4 The Greedy Algorithm .....................................................................337 13.5 Matroid Intersection
.........................................................................343 13.6 Matroid Partitioning .........................................................................347 13.7 Weighted Matroid Intersection ........................................................349 Exercises................................................................... 353 References......................................... 355 14 Generalizations of Matroids ................................................................... 359 14.1 Greedoids ......................................................................................... 359 14.2 Polymatroids .................................................................................... 363 14.3 Minimizing Submodular Functions.................................................. 367 14.4 Schrijver’s Algorithm .......................................................................370
XX Table of Contents 14.5 Symmetric Submodular Functions ............................ 14.6 Submodular Function Maximization.......................... Exercises.................................................................................. References................................................................................ 15 AP-Completeness.................................................................. 15.1 Tbring Machines............................................................ 15.2 Church’s Thesis.............................................................. 15.3 P and NP........................................................................ 15.4 Cook’s Theorem............................................................ 15.5 Some Basic №P-Complete Problems.......................... 15.6 The Class coNP............................................................ 15.7 AP-Hard Problems........................................................ Exercises.................................................................................. References................................................................................ 16 Approximation Algorithms ................................................ 16.1 Set Covering ................................................................ 16.2 The Max-Cut Problem ................................................ 16.3 Colouring ...................................................................... 16.4 Approximation Schemes.............................................. 16.5 Maximum Satisfiability
.............................................. 16.6 The PCP Theorem........................................................ 16.7 L-Reductions.................................................................. Exercises.................................................................................. References................................................................................ 17 The Knapsack Problem ...................................................... 17.1 Fractional Knapsack and Weighted Median Problem 17.2 A Pseudopolynomial Algorithm ................................ 17.3 A Fully Polynomial Approximation Scheme .......... 17.4 Multi-Dimensional Knapsack .................................... 17.5 The Nemhauser-Ullmann Algorithm.......................... Exercises.................................................................................. References................................................................................ 18 Bin-Packing .......................................................................... 18.1 Greedy Heuristics ........................................................ 18.2 An Asymptotic Approximation Scheme .................. 18.3 The Karmarkar-Karp Algorithm.................................. Exercises.................................................................................. References................................................................................ 19 Multicommodity Flows and Edge-Disjoint Paths ........ 19.1 Multicommodity Flows................................................ 19.2 Algorithms for
Multicommodity Flows .................... 19.3 Sparsest Cut and Max-Flow Min-Cut Ratio ............
Table of Contents XXI 19.4 The Leighton-Rao Theorem............................................................. 521 19.5 Directed Edge-Disjoint Paths Problem............................................ 524 19.6 Undirected Edge-Disjoint Paths Problem.........................................527 Exercises.....................................................................................................533 References...................................................................................................537 20 Network Design Problems.......................................................................543 20.1 Steiner Trees ....................................................................................544 20.2 The Robins-Zelikovsky Algorithm....................................................549 20.3 Rounding the Directed Component LP ...........................................555 20.4 Survivable Network Design ............................................................. 561 20.5 A Primal-Dual Approximation Algorithm .......................................564 20.6 Jain’s Algorithm................................................................................ 572 20.7 The VPN Problem............................................................................ 578 Exercises.....................................................................................................581 References...................................................................................................585 21 The Traveling Salesman Problem
......................................................... 591 21.1 Approximation Algorithms for the TSP .........................................591 21.2 Euclidean TSP .................................................................................. 596 21.3 Local Search ....................................................................................603 21.4 The Traveling Salesman Poly tope.................................................... 610 21.5 Lower Bounds .................................................................................. 616 21.6 Branch-and-Bound............................................................................ 618 Exercises.....................................................................................................621 References.................................................................................. 624 22 Facility Location ......................................................................................629 22.1 The Uncapacitated Facility Location Problem ............................... 629 22.2 Rounding Linear Programming Solutions .......................................631 22.3 Primal-Dual Algorithms ...................................................................633 22.4 Scaling and Greedy Augmentation....................................................639 22.5 Bounding the Number of Facilities.................................................. 642 22.6 Local Search ....................................................................................645 22.7 Capacitated Facility Location
Problems...........................................651 • 22.8 Universal Facility Location ............................................................. 654 Exercises.....................................................................................................661 References...................................................................................................662 Notation Index...................................................................................................667 Author Index.....................................................................................................671 Subject Index............................... 683
|
any_adam_object | 1 |
author | Korte, Bernhard 1938- Vygen, Jens 1967- |
author_GND | (DE-588)139321802 (DE-588)14204086X |
author_facet | Korte, Bernhard 1938- Vygen, Jens 1967- |
author_role | aut aut |
author_sort | Korte, Bernhard 1938- |
author_variant | b k bk j v jv |
building | Verbundindex |
bvnumber | BV044722203 |
classification_rvk | SK 890 |
classification_tum | MAT 913f |
ctrlnum | (OCoLC)1020568382 (DE-599)BVBBV044722203 |
dewey-full | 519.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.64 |
dewey-search | 519.64 |
dewey-sort | 3519.64 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | sixth edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01889nam a2200481 cb4500</leader><controlfield tag="001">BV044722203</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210623 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180119s2018 |||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11,N46</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662560389</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-3-662-56038-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1020568382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044722203</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-M158</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.64</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65K05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68R10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 913f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">90C27</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Korte, Bernhard</subfield><subfield code="d">1938-</subfield><subfield code="0">(DE-588)139321802</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorial optimization</subfield><subfield code="b">theory and algorithms</subfield><subfield code="c">Bernhard Korte, Jens Vygen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">sixth edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 698 Seiten</subfield><subfield code="b">Diagramme</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Algorithms and combinatorics</subfield><subfield code="v">volume 21</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Optimierung</subfield><subfield code="0">(DE-588)4031826-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorische Optimierung</subfield><subfield code="0">(DE-588)4031826-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vygen, Jens</subfield><subfield code="d">1967-</subfield><subfield code="0">(DE-588)14204086X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-662-56039-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Algorithms and combinatorics</subfield><subfield code="v">volume 21</subfield><subfield code="w">(DE-604)BV000617357</subfield><subfield code="9">21</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030118450&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030118450</subfield></datafield></record></collection> |
id | DE-604.BV044722203 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:00:21Z |
institution | BVB |
isbn | 9783662560389 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030118450 |
oclc_num | 1020568382 |
open_access_boolean | |
owner | DE-83 DE-91G DE-BY-TUM DE-523 DE-634 DE-M158 DE-11 DE-739 DE-188 DE-355 DE-BY-UBR DE-20 DE-384 DE-706 |
owner_facet | DE-83 DE-91G DE-BY-TUM DE-523 DE-634 DE-M158 DE-11 DE-739 DE-188 DE-355 DE-BY-UBR DE-20 DE-384 DE-706 |
physical | XXI, 698 Seiten Diagramme 25 cm |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer |
record_format | marc |
series | Algorithms and combinatorics |
series2 | Algorithms and combinatorics |
spelling | Korte, Bernhard 1938- (DE-588)139321802 aut Combinatorial optimization theory and algorithms Bernhard Korte, Jens Vygen sixth edition Berlin Springer [2018] © 2018 XXI, 698 Seiten Diagramme 25 cm txt rdacontent n rdamedia nc rdacarrier Algorithms and combinatorics volume 21 Literaturangaben Kombinatorische Optimierung (DE-588)4031826-6 gnd rswk-swf Kombinatorische Optimierung (DE-588)4031826-6 s DE-604 Vygen, Jens 1967- (DE-588)14204086X aut Erscheint auch als Online-Ausgabe 978-3-662-56039-6 Algorithms and combinatorics volume 21 (DE-604)BV000617357 21 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030118450&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Korte, Bernhard 1938- Vygen, Jens 1967- Combinatorial optimization theory and algorithms Algorithms and combinatorics Kombinatorische Optimierung (DE-588)4031826-6 gnd |
subject_GND | (DE-588)4031826-6 |
title | Combinatorial optimization theory and algorithms |
title_auth | Combinatorial optimization theory and algorithms |
title_exact_search | Combinatorial optimization theory and algorithms |
title_full | Combinatorial optimization theory and algorithms Bernhard Korte, Jens Vygen |
title_fullStr | Combinatorial optimization theory and algorithms Bernhard Korte, Jens Vygen |
title_full_unstemmed | Combinatorial optimization theory and algorithms Bernhard Korte, Jens Vygen |
title_short | Combinatorial optimization |
title_sort | combinatorial optimization theory and algorithms |
title_sub | theory and algorithms |
topic | Kombinatorische Optimierung (DE-588)4031826-6 gnd |
topic_facet | Kombinatorische Optimierung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030118450&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000617357 |
work_keys_str_mv | AT kortebernhard combinatorialoptimizationtheoryandalgorithms AT vygenjens combinatorialoptimizationtheoryandalgorithms |