Pro Deep Learning with TensorFlow: A Mathematical Approach to Advanced Artificial Intelligence in Python
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berkeley, CA
Apress
2017
|
Schlagworte: | |
Online-Zugang: | FAW01 FHA01 FHI01 FHM01 FHN01 FHR01 FKE01 FWS01 FWS02 HTW01 Volltext |
Beschreibung: | 1 Online-Ressource (XXI, 398 Seiten) 189 Illustrationen, 87 Illustrationen (farbig) |
ISBN: | 9781484230961 |
DOI: | 10.1007/978-1-4842-3096-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044702415 | ||
003 | DE-604 | ||
005 | 20180207 | ||
007 | cr|uuu---uuuuu | ||
008 | 180108s2017 |||| o||u| ||||||eng d | ||
020 | |a 9781484230961 |c Online |9 978-1-4842-3096-1 | ||
024 | 7 | |a 10.1007/978-1-4842-3096-1 |2 doi | |
035 | |a (ZDB-2-CWD)9781484230961 | ||
035 | |a (OCoLC)1018468068 | ||
035 | |a (DE-599)BVBBV044702415 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-Aug4 |a DE-898 |a DE-M347 |a DE-573 |a DE-523 |a DE-859 |a DE-863 |a DE-92 |a DE-862 | ||
082 | 0 | |a 006 |2 23 | |
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Pattanayak, Santanu |e Verfasser |4 aut | |
245 | 1 | 0 | |a Pro Deep Learning with TensorFlow |b A Mathematical Approach to Advanced Artificial Intelligence in Python |c by Santanu Pattanayak |
264 | 1 | |a Berkeley, CA |b Apress |c 2017 | |
300 | |a 1 Online-Ressource (XXI, 398 Seiten) |b 189 Illustrationen, 87 Illustrationen (farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Computer science | |
650 | 4 | |a Computers | |
650 | 4 | |a Computer Science | |
650 | 4 | |a Computing Methodologies | |
650 | 4 | |a Big Data | |
650 | 4 | |a Python | |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 2 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4842-3095-4 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4842-3096-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-CWD | ||
940 | 1 | |q ZDB-2-CWD_2017 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030099090 | ||
966 | e | |u https://doi.org/10.1007/978-1-4842-3096-1 |l FAW01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-3096-1 |l FHA01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-3096-1 |l FHI01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-3096-1 |l FHM01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-3096-1 |l FHN01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-3096-1 |l FHR01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-3096-1 |l FKE01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-3096-1 |l FWS01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-3096-1 |l FWS02 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-3096-1 |l HTW01 |p ZDB-2-CWD |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 676286 |
---|---|
_version_ | 1806182648305942529 |
any_adam_object | |
author | Pattanayak, Santanu |
author_facet | Pattanayak, Santanu |
author_role | aut |
author_sort | Pattanayak, Santanu |
author_variant | s p sp |
building | Verbundindex |
bvnumber | BV044702415 |
classification_rvk | ST 302 |
collection | ZDB-2-CWD |
ctrlnum | (ZDB-2-CWD)9781484230961 (OCoLC)1018468068 (DE-599)BVBBV044702415 |
dewey-full | 006 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006 |
dewey-search | 006 |
dewey-sort | 16 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-1-4842-3096-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02863nmm a2200625zc 4500</leader><controlfield tag="001">BV044702415</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180207 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180108s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484230961</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4842-3096-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4842-3096-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CWD)9781484230961</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1018468068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044702415</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pattanayak, Santanu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pro Deep Learning with TensorFlow</subfield><subfield code="b">A Mathematical Approach to Advanced Artificial Intelligence in Python</subfield><subfield code="c">by Santanu Pattanayak</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXI, 398 Seiten)</subfield><subfield code="b">189 Illustrationen, 87 Illustrationen (farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computing Methodologies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-3095-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4842-3096-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CWD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CWD_2017</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030099090</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-3096-1</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-3096-1</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-3096-1</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-3096-1</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-3096-1</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-3096-1</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-3096-1</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-3096-1</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-3096-1</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-3096-1</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044702415 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T13:00:02Z |
institution | BVB |
isbn | 9781484230961 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030099090 |
oclc_num | 1018468068 |
open_access_boolean | |
owner | DE-1046 DE-Aug4 DE-898 DE-BY-UBR DE-M347 DE-573 DE-523 DE-859 DE-863 DE-BY-FWS DE-92 DE-862 DE-BY-FWS |
owner_facet | DE-1046 DE-Aug4 DE-898 DE-BY-UBR DE-M347 DE-573 DE-523 DE-859 DE-863 DE-BY-FWS DE-92 DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (XXI, 398 Seiten) 189 Illustrationen, 87 Illustrationen (farbig) |
psigel | ZDB-2-CWD ZDB-2-CWD_2017 |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Apress |
record_format | marc |
spellingShingle | Pattanayak, Santanu Pro Deep Learning with TensorFlow A Mathematical Approach to Advanced Artificial Intelligence in Python Computer science Computers Computer Science Computing Methodologies Big Data Python Python Programmiersprache (DE-588)4434275-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Deep learning (DE-588)1135597375 gnd |
subject_GND | (DE-588)4434275-5 (DE-588)4193754-5 (DE-588)1135597375 |
title | Pro Deep Learning with TensorFlow A Mathematical Approach to Advanced Artificial Intelligence in Python |
title_auth | Pro Deep Learning with TensorFlow A Mathematical Approach to Advanced Artificial Intelligence in Python |
title_exact_search | Pro Deep Learning with TensorFlow A Mathematical Approach to Advanced Artificial Intelligence in Python |
title_full | Pro Deep Learning with TensorFlow A Mathematical Approach to Advanced Artificial Intelligence in Python by Santanu Pattanayak |
title_fullStr | Pro Deep Learning with TensorFlow A Mathematical Approach to Advanced Artificial Intelligence in Python by Santanu Pattanayak |
title_full_unstemmed | Pro Deep Learning with TensorFlow A Mathematical Approach to Advanced Artificial Intelligence in Python by Santanu Pattanayak |
title_short | Pro Deep Learning with TensorFlow |
title_sort | pro deep learning with tensorflow a mathematical approach to advanced artificial intelligence in python |
title_sub | A Mathematical Approach to Advanced Artificial Intelligence in Python |
topic | Computer science Computers Computer Science Computing Methodologies Big Data Python Python Programmiersprache (DE-588)4434275-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Deep learning (DE-588)1135597375 gnd |
topic_facet | Computer science Computers Computer Science Computing Methodologies Big Data Python Python Programmiersprache Maschinelles Lernen Deep learning |
url | https://doi.org/10.1007/978-1-4842-3096-1 |
work_keys_str_mv | AT pattanayaksantanu prodeeplearningwithtensorflowamathematicalapproachtoadvancedartificialintelligenceinpython |