Irreducible Cartesian tensors:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2018]
|
Schriftenreihe: | De Gruyter studies in mathematical physics
volume 43 |
Schlagworte: | |
Online-Zugang: | http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110563634&searchTitles=true Inhaltsverzeichnis |
Beschreibung: | X, 255 Seiten 12 Illustrationen 24 cm x 17 cm |
ISBN: | 9783110563634 3110563630 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV044680096 | ||
003 | DE-604 | ||
005 | 20181129 | ||
007 | t | ||
008 | 171212s2018 gw a||| |||| 00||| eng d | ||
015 | |a 17,N30 |2 dnb | ||
016 | 7 | |a 1136878823 |2 DE-101 | |
020 | |a 9783110563634 |c : EUR 99.95 (DE) (freier Preis), EUR 100.80 (AT) (freier Preis) |9 978-3-11-056363-4 | ||
020 | |a 3110563630 |9 3-11-056363-0 | ||
024 | 3 | |a 9783110563634 | |
035 | |a (OCoLC)1015882469 | ||
035 | |a (DE-599)DNB1136878823 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-19 |a DE-634 |a DE-83 |a DE-703 | ||
082 | 0 | |a 530 |2 23 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Snider, Robert F. |e Verfasser |0 (DE-588)1148463542 |4 aut | |
245 | 1 | 0 | |a Irreducible Cartesian tensors |c Robert F. Snider |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a X, 255 Seiten |b 12 Illustrationen |c 24 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter studies in mathematical physics |v volume 43 | |
650 | 0 | 7 | |a Kartesischer Tensor |0 (DE-588)4603780-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kartesischer Tensor |0 (DE-588)4603780-9 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-056486-0 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-056373-3 |
830 | 0 | |a De Gruyter studies in mathematical physics |v volume 43 |w (DE-604)BV040141722 |9 43 | |
856 | 4 | 2 | |m X:MVB |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110563634&searchTitles=true |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030077259&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030077259 |
Datensatz im Suchindex
_version_ | 1804178134676799488 |
---|---|
adam_text | CONTENTS
PREFACE* V
LIST OF FIGURES* XI
1 INTRODUCTION * 1
2 VECTORIAL APPROACH * 9
2.1 AN INTRODUCTION TO VECTORS AND TENSORS * 9
2.2 THE FOUR ELEMENTARY TENSOR OPERATIONS * 13
2.3 ROTATIONS IN TWO DIMENSIONS * 15
2.3.1 ROTATION BY 7
T
/2 * 16
2.3.2 TENSORIAL DESCRIPTION OF A ROTATION * 17
2.3.3 GROUP THEORY ASPECTS * 18
2.4 DIAGRAMMATIC REPRESENTATION OF TENSORS * 21
2.5 ROTATIONS IN THREE DIMENSIONS * 26
2.5.1 THE 3-DIMENSIONAL ROTATION GROUP * 29
2.5.2 EULERIAN ANGLES * 32
2.5.3 PASSIVE ROTATIONS * 37
3 TENSORS AND THEIR ROTATIONAL REDUCTION * 41
3.1 THE ROTATIONAL INVARIANCE OF U AND E * 45
3.2 INVARIANT EMBEDDING AND TENSORIAL REDUCTION * 47
3.2.1 INVARIANT EMBEDDING * 47
3.2.2 REDUCTION AND NATURAL TENSORS * 48
3.3 THE NATURAL PROJECTION TENSORS * 51
3.3.1 CONTRACTION OF E ^ * 53
3.3.2 SELECTION OF A DIRECTION OF E ^ * 54
3.4 NATURAL TENSORS AS IRREDUCIBLE REPRESENTATIONS * 55
3.4.1 DIMENSION OF SYMMETRIC TRACELESS TENSORS OF ORDER
P * 56
3.4.2 THE CASIMIR INVARIANT EIGENVALUE FOR A SYMMETRIC TRACELESS
TENSOR * 56
3.5 PARENTAGE SCHEME * 57
3.6 METHOD OF CHARACTERS * 59
3.6.1 GROUP DENSITY * 59
3.6.2 CLASSIFICATION OF TENSORS OF ORDERPVIA CHARACTERS * 61
4 TENSORS OF R * 67
4.1 NATURAL TENSORS OF R * 67
4.2 INTEGRALS OF PRODUCTS O FF * 70
4.3 ORTHOGONAL FUNCTIONS OF R ASSOCIATED WITH A GAUSSIAN WEIGHT
FUNCTION
----
72
5 SPHERICAL VECTORS AND TENSORS * 75
5.1 GROUP GENERATOR PROPERTIES * 76
5.2 THE COMPONENTS OF A SPHERICAL VECTOR* 79
5.3 ROTATION OF A SPHERICAL VECTOR* 82
5.4 SPHERICAL TENSORS * 84
5.5 SPHERICAL HARMONICS * 90
6 3-J COUPLING TENSORS * 93
6.1 DEFINITIONS
----
94
6.2 DETAILED CALCULATION O F T ( L I ,L 2 ,4 ) * 96
6.2.1 T ( 4 , 4 , 4 ) FOR
L EVEN
------
96
6.2.2 THE SPECIAL CASE THAT 4 + 4 = 4 * 99
6.2.3 THE GENERAL CASE FOR
L EVEN * 100
6.2.4 T ( 4 , 4 , 4 ) F O R I ODD* 102
6.3 DETAILED CALCULATION OF 2(4,
4
,
4
)
* 104
6.3.1 2 ( 4 ,4 ,4 ) F O R I EVEN
------
105
6.3.2 2 ( 4 ,^ ,4 ) F O R I ODD
-------
107
6.4 THREE BASIC CONTRACTIONS * 108
6.5 RECURSION RELATIONS * 111
6.6 CALCULATION OF J2ABC XA,B,C * 115
6.6.1 SUM OVER
A AND B * 116
6.6.2 SUM OVER
C
----
117
6.6.3 CALCULATION OF 53AB
XA,B,O
* 117
6.6.4 J2ABC XA,B,C FOR EVEN AND ODD I * 121
7 PROPERTIES OF 3- J TENSORS * 123
7.1 COMPLETENESS RELATION * 123
7.2 INTEGRALS OVER FUNCTIONS O FF * 124
7.3 3-J SYMBOLS
----
128
7.3.1 BASIC PROPERTIES OF 3-J SYMBOLS * 129
7.4 INTEGRALS OF SPHERICAL HARMONICS * 131
7.5 INVARIANT FUNCTIONS OF THREE VECTORS * 132
7.6 CALCULATION OF TWO PARTICULAR SETS OF 3-J SYMBOLS * 137
8 THE 6-J AND OTHER
N-J SYMBOLS * 139
8.1 THE 6-J SYMBOL * 139
8.2 6-J SYMBOL PROPERTIES * 142
8.3 EVALUATION OF CERTAIN 6-J SYMBOLS * 144
8.3.1 THE CASES WHEN 1 = 0 AND 1 * 144
8.3.2 THE CASE WHEN
3
= T + * 147
8.3.3 A RECURSION RELATION * 151
8.4 THE 9-J SYMBOL
-----
152
9 ROTATION MATRICES * 155
9.1 AXIS-ANGLE REPRESENTATION * 155
9.2 EULER ANGLE REPRESENTATION * 158
9.2.1 ALTERNATE FORMULA * 159
9.3 CONNECTION WITH SPHERICAL HARMONICS * 160
9.4 PROPERTIES OF THE ROTATION MATRICES * 163
9.5 AS EIGENVECTORS OF THE ROTATION GENERATORS * 167
10 SPINORS * 169
10.1 THE STANDARD SPINOR BASIS SETS * 170
10.2 ROTATION OF A SPINOR
----
172
10.2.1 PRODUCTS OF ROTATIONS * 175
10.3 THE INVARIANT TENSOR E * 176
10.4 SPINOR INVARIANTS * 180
10.5 REDUCTION OF SPINOR TENSORS OF ORDER P * 182
10.6 SPINOR TENSORS OF WEIGHT
L * 185
10.7 3-J SPINOR TENSORS * 188
10.7.1 NORMALIZATION CALCULATION * 189
10.7.2 3-J SYMBOLS
----
191
10.8 SPINOR-CARTESIAN TRANSFORMATION * 193
10.8.1 CAYLEY-KLEIN REPRESENTATION OF A VECTOR * 196
10.9 DISCUSSION OF SPINORS * 197
11 APPLICATIONS TO QUANTUM MECHANICS * 199
11.1 EIGENVECTORS OF THE ANGULAR MOMENTUM * 200
11.1.1 ABSTRACT PROPERTIES * 201
11.1.2 POSITION REPRESENTATION * 203
11.1.3 TENSORIAL REPRESENTATION * 207
11.1.4 MOMENTUM REPRESENTATION * 207
11.2 SYMMETRIC TOP EIGENVECTORS * 209
11.2.1 ANOMALOUS COMMUTATION RELATIONS * 213
11.3 WIGNER-ECKART THEOREM * 214
11.4 TENSORS OF ANGULAR MOMENTUM * 217
11.5 TRACES OF PRODUCTS OF J * 221
11.6 ANGULAR MOMENTUM SUPEROPERATORS * 225
A SOME FORMALITIES OF LINEAR ALGEBRA * 229
A.L GROUP THEORY
-----
229
A.2 VECTOR SPACES * 234
A.3 CARTESIAN TENSORS AND POLYADICS * 242
B CALCULATION OF D $ N (0,/3,0) * 247
BIBLIOGRAPHY * 251
SYMBOL INDEX * 253
|
any_adam_object | 1 |
author | Snider, Robert F. |
author_GND | (DE-588)1148463542 |
author_facet | Snider, Robert F. |
author_role | aut |
author_sort | Snider, Robert F. |
author_variant | r f s rf rfs |
building | Verbundindex |
bvnumber | BV044680096 |
classification_rvk | SK 370 |
ctrlnum | (OCoLC)1015882469 (DE-599)DNB1136878823 |
dewey-full | 530 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530 |
dewey-search | 530 |
dewey-sort | 3530 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02016nam a2200481 cb4500</leader><controlfield tag="001">BV044680096</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181129 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">171212s2018 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">17,N30</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1136878823</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110563634</subfield><subfield code="c">: EUR 99.95 (DE) (freier Preis), EUR 100.80 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-056363-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110563630</subfield><subfield code="9">3-11-056363-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110563634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1015882469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1136878823</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Snider, Robert F.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1148463542</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Irreducible Cartesian tensors</subfield><subfield code="c">Robert F. Snider</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 255 Seiten</subfield><subfield code="b">12 Illustrationen</subfield><subfield code="c">24 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematical physics</subfield><subfield code="v">volume 43</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kartesischer Tensor</subfield><subfield code="0">(DE-588)4603780-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kartesischer Tensor</subfield><subfield code="0">(DE-588)4603780-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-056486-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-056373-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematical physics</subfield><subfield code="v">volume 43</subfield><subfield code="w">(DE-604)BV040141722</subfield><subfield code="9">43</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110563634&searchTitles=true</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030077259&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030077259</subfield></datafield></record></collection> |
id | DE-604.BV044680096 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:59:09Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110563634 3110563630 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030077259 |
oclc_num | 1015882469 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-634 DE-83 DE-703 |
owner_facet | DE-19 DE-BY-UBM DE-634 DE-83 DE-703 |
physical | X, 255 Seiten 12 Illustrationen 24 cm x 17 cm |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter studies in mathematical physics |
series2 | De Gruyter studies in mathematical physics |
spelling | Snider, Robert F. Verfasser (DE-588)1148463542 aut Irreducible Cartesian tensors Robert F. Snider Berlin ; Boston De Gruyter [2018] © 2018 X, 255 Seiten 12 Illustrationen 24 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier De Gruyter studies in mathematical physics volume 43 Kartesischer Tensor (DE-588)4603780-9 gnd rswk-swf Kartesischer Tensor (DE-588)4603780-9 s DE-604 Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-11-056486-0 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-056373-3 De Gruyter studies in mathematical physics volume 43 (DE-604)BV040141722 43 X:MVB http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110563634&searchTitles=true DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030077259&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Snider, Robert F. Irreducible Cartesian tensors De Gruyter studies in mathematical physics Kartesischer Tensor (DE-588)4603780-9 gnd |
subject_GND | (DE-588)4603780-9 |
title | Irreducible Cartesian tensors |
title_auth | Irreducible Cartesian tensors |
title_exact_search | Irreducible Cartesian tensors |
title_full | Irreducible Cartesian tensors Robert F. Snider |
title_fullStr | Irreducible Cartesian tensors Robert F. Snider |
title_full_unstemmed | Irreducible Cartesian tensors Robert F. Snider |
title_short | Irreducible Cartesian tensors |
title_sort | irreducible cartesian tensors |
topic | Kartesischer Tensor (DE-588)4603780-9 gnd |
topic_facet | Kartesischer Tensor |
url | http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110563634&searchTitles=true http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030077259&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV040141722 |
work_keys_str_mv | AT sniderrobertf irreduciblecartesiantensors AT walterdegruytergmbhcokg irreduciblecartesiantensors |