Richardson extrapolation: practical aspects and applications
Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2018]
|
Schriftenreihe: | De Gruyter series in applied and numerical mathematics
Volume 2 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FKE01 FLA01 UBY01 UPA01 TUM01 Volltext |
Zusammenfassung: | Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book.Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. ContentsThe basic properties of Richardson extrapolationRichardson extrapolation for explicit Runge-Kutta methodsLinear multistep and predictor-corrector methodsRichardson extrapolation for some implicit methodsRichardson extrapolation for splitting techniquesRichardson extrapolation for advection problemsRichardson extrapolation for some other problemsGeneral conclusions |
Beschreibung: | 1 Online-Ressource (xvii, 292 Seiten) |
ISBN: | 9783110531985 9783110533002 |
DOI: | 10.1515/9783110533002 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044677211 | ||
003 | DE-604 | ||
005 | 20180927 | ||
007 | cr|uuu---uuuuu | ||
008 | 171211s2018 |||| o||u| ||||||eng d | ||
020 | |a 9783110531985 |c EPUB |9 978-3-11-053198-5 | ||
020 | |a 9783110533002 |c PDF |9 978-3-11-053300-2 | ||
024 | 7 | |a 10.1515/9783110533002 |2 doi | |
035 | |a (ZDB-23-DGG)9783110533002 | ||
035 | |a (OCoLC)1015870645 | ||
035 | |a (DE-599)BVBBV044677211 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-Aug4 |a DE-860 |a DE-739 |a DE-706 |a DE-91 |a DE-1046 |a DE-1043 |a DE-858 | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
245 | 1 | 0 | |a Richardson extrapolation |b practical aspects and applications |c Zahari Zlatev, Ivan Dimov, István Faragó, Ágnes Havasi |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a 1 Online-Ressource (xvii, 292 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter series in applied and numerical mathematics |v Volume 2 | |
520 | |a Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book.Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. ContentsThe basic properties of Richardson extrapolationRichardson extrapolation for explicit Runge-Kutta methodsLinear multistep and predictor-corrector methodsRichardson extrapolation for some implicit methodsRichardson extrapolation for splitting techniquesRichardson extrapolation for advection problemsRichardson extrapolation for some other problemsGeneral conclusions | ||
650 | 4 | |a Differentialgleichung | |
650 | 4 | |a Extrapolation | |
650 | 4 | |a Numerisches Verfahren | |
650 | 4 | |a Operator-Splitting-Verfahren | |
650 | 4 | |a Runge-Kutta-Verfahren | |
650 | 0 | 7 | |a Richardson-Extrapolation |0 (DE-588)1146018282 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Richardson-Extrapolation |0 (DE-588)1146018282 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Dimov, Ivan |d 1952- |0 (DE-588)1043787461 |4 aut | |
700 | 1 | |a Faragó, István |d 1950- |0 (DE-588)1053133243 |4 aut | |
700 | 1 | |a Havasi, Ágnes |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-051649-4 |
830 | 0 | |a De Gruyter series in applied and numerical mathematics |v Volume 2 |w (DE-604)BV044780808 |9 2 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110533002 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030074454 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1515/9783110533002 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110533002 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110533002 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110533002 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110533002 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110533002 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110533002 |l UBY01 |p ZDB-23-DMA |q UBY_Paketkauf17 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110533002 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=5150940 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178129559748608 |
---|---|
any_adam_object | |
author | Dimov, Ivan 1952- Faragó, István 1950- Havasi, Ágnes |
author_GND | (DE-588)1043787461 (DE-588)1053133243 |
author_facet | Dimov, Ivan 1952- Faragó, István 1950- Havasi, Ágnes |
author_role | aut aut aut |
author_sort | Dimov, Ivan 1952- |
author_variant | i d id i f if á h áh |
building | Verbundindex |
bvnumber | BV044677211 |
classification_rvk | SK 920 |
collection | ZDB-23-DGG ZDB-23-DMA ZDB-30-PQE |
ctrlnum | (ZDB-23-DGG)9783110533002 (OCoLC)1015870645 (DE-599)BVBBV044677211 |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110533002 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04146nmm a2200625zcb4500</leader><controlfield tag="001">BV044677211</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180927 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171211s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110531985</subfield><subfield code="c">EPUB</subfield><subfield code="9">978-3-11-053198-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110533002</subfield><subfield code="c">PDF</subfield><subfield code="9">978-3-11-053300-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110533002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110533002</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1015870645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044677211</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Richardson extrapolation</subfield><subfield code="b">practical aspects and applications</subfield><subfield code="c">Zahari Zlatev, Ivan Dimov, István Faragó, Ágnes Havasi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 292 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter series in applied and numerical mathematics</subfield><subfield code="v">Volume 2</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book.Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. ContentsThe basic properties of Richardson extrapolationRichardson extrapolation for explicit Runge-Kutta methodsLinear multistep and predictor-corrector methodsRichardson extrapolation for some implicit methodsRichardson extrapolation for splitting techniquesRichardson extrapolation for advection problemsRichardson extrapolation for some other problemsGeneral conclusions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentialgleichung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extrapolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerisches Verfahren</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator-Splitting-Verfahren</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta-Verfahren</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Richardson-Extrapolation</subfield><subfield code="0">(DE-588)1146018282</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Richardson-Extrapolation</subfield><subfield code="0">(DE-588)1146018282</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dimov, Ivan</subfield><subfield code="d">1952-</subfield><subfield code="0">(DE-588)1043787461</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Faragó, István</subfield><subfield code="d">1950-</subfield><subfield code="0">(DE-588)1053133243</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Havasi, Ágnes</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-051649-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter series in applied and numerical mathematics</subfield><subfield code="v">Volume 2</subfield><subfield code="w">(DE-604)BV044780808</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110533002</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030074454</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110533002</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110533002</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110533002</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110533002</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110533002</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110533002</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110533002</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">UBY_Paketkauf17</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110533002</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=5150940</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044677211 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:59:04Z |
institution | BVB |
isbn | 9783110531985 9783110533002 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030074454 |
oclc_num | 1015870645 |
open_access_boolean | |
owner | DE-859 DE-Aug4 DE-860 DE-739 DE-706 DE-91 DE-BY-TUM DE-1046 DE-1043 DE-858 |
owner_facet | DE-859 DE-Aug4 DE-860 DE-739 DE-706 DE-91 DE-BY-TUM DE-1046 DE-1043 DE-858 |
physical | 1 Online-Ressource (xvii, 292 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-30-PQE ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA UBY_Paketkauf17 ZDB-23-DGG UPA_PDA_DGG ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter series in applied and numerical mathematics |
series2 | De Gruyter series in applied and numerical mathematics |
spelling | Richardson extrapolation practical aspects and applications Zahari Zlatev, Ivan Dimov, István Faragó, Ágnes Havasi Berlin ; Boston De Gruyter [2018] © 2018 1 Online-Ressource (xvii, 292 Seiten) txt rdacontent c rdamedia cr rdacarrier De Gruyter series in applied and numerical mathematics Volume 2 Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book.Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. ContentsThe basic properties of Richardson extrapolationRichardson extrapolation for explicit Runge-Kutta methodsLinear multistep and predictor-corrector methodsRichardson extrapolation for some implicit methodsRichardson extrapolation for splitting techniquesRichardson extrapolation for advection problemsRichardson extrapolation for some other problemsGeneral conclusions Differentialgleichung Extrapolation Numerisches Verfahren Operator-Splitting-Verfahren Runge-Kutta-Verfahren Richardson-Extrapolation (DE-588)1146018282 gnd rswk-swf Richardson-Extrapolation (DE-588)1146018282 s 1\p DE-604 Dimov, Ivan 1952- (DE-588)1043787461 aut Faragó, István 1950- (DE-588)1053133243 aut Havasi, Ágnes aut Erscheint auch als Druck-Ausgabe 978-3-11-051649-4 De Gruyter series in applied and numerical mathematics Volume 2 (DE-604)BV044780808 2 https://doi.org/10.1515/9783110533002 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dimov, Ivan 1952- Faragó, István 1950- Havasi, Ágnes Richardson extrapolation practical aspects and applications De Gruyter series in applied and numerical mathematics Differentialgleichung Extrapolation Numerisches Verfahren Operator-Splitting-Verfahren Runge-Kutta-Verfahren Richardson-Extrapolation (DE-588)1146018282 gnd |
subject_GND | (DE-588)1146018282 |
title | Richardson extrapolation practical aspects and applications |
title_auth | Richardson extrapolation practical aspects and applications |
title_exact_search | Richardson extrapolation practical aspects and applications |
title_full | Richardson extrapolation practical aspects and applications Zahari Zlatev, Ivan Dimov, István Faragó, Ágnes Havasi |
title_fullStr | Richardson extrapolation practical aspects and applications Zahari Zlatev, Ivan Dimov, István Faragó, Ágnes Havasi |
title_full_unstemmed | Richardson extrapolation practical aspects and applications Zahari Zlatev, Ivan Dimov, István Faragó, Ágnes Havasi |
title_short | Richardson extrapolation |
title_sort | richardson extrapolation practical aspects and applications |
title_sub | practical aspects and applications |
topic | Differentialgleichung Extrapolation Numerisches Verfahren Operator-Splitting-Verfahren Runge-Kutta-Verfahren Richardson-Extrapolation (DE-588)1146018282 gnd |
topic_facet | Differentialgleichung Extrapolation Numerisches Verfahren Operator-Splitting-Verfahren Runge-Kutta-Verfahren Richardson-Extrapolation |
url | https://doi.org/10.1515/9783110533002 |
volume_link | (DE-604)BV044780808 |
work_keys_str_mv | AT dimovivan richardsonextrapolationpracticalaspectsandapplications AT faragoistvan richardsonextrapolationpracticalaspectsandapplications AT havasiagnes richardsonextrapolationpracticalaspectsandapplications |