Complementation of Normal Subgroups: In Finite Groups
Starting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian norma...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ;Boston
De Gruyter
[2017]
|
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-Aug4 DE-898 DE-859 DE-860 DE-706 DE-739 Volltext |
Zusammenfassung: | Starting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian normal subgroups and formations. ContentsPrerequisitesThe Schur-Zassenhaus theorem: A bit of history and motivationAbelian and minimal normal subgroupsReduction theoremsSubgroups in the chief series, derived series, and lower nilpotent seriesNormal subgroups with abelian sylow subgroupsThe formation generationGroups with specific classes of subgroups complemented |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 13. Sep 2017) |
Beschreibung: | 1 online resource (156pages) |
ISBN: | 9783110480214 |
DOI: | 10.1515/9783110480214 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV044673075 | ||
003 | DE-604 | ||
005 | 20241113 | ||
007 | cr|uuu---uuuuu | ||
008 | 171207s2017 xx o|||| 00||| eng d | ||
020 | |a 9783110480214 |9 978-3-11-048021-4 | ||
024 | 7 | |a 10.1515/9783110480214 |2 doi | |
035 | |a (ZDB-23-DGG)9783110480214 | ||
035 | |a (OCoLC)1165488159 | ||
035 | |a (DE-599)BVBBV044673075 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-860 |a DE-Aug4 |a DE-859 |a DE-739 |a DE-1046 |a DE-1043 |a DE-858 |a DE-898 |a DE-706 | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Kirtland, Joseph |0 (DE-588)1188484699 |4 aut | |
245 | 1 | 0 | |a Complementation of Normal Subgroups |b In Finite Groups |c Joseph Kirtland |
264 | 1 | |a Berlin ;Boston |b De Gruyter |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a 1 online resource (156pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 13. Sep 2017) | ||
520 | |a Starting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian normal subgroups and formations. ContentsPrerequisitesThe Schur-Zassenhaus theorem: A bit of history and motivationAbelian and minimal normal subgroupsReduction theoremsSubgroups in the chief series, derived series, and lower nilpotent seriesNormal subgroups with abelian sylow subgroupsThe formation generationGroups with specific classes of subgroups complemented | ||
546 | |a In English | ||
650 | 4 | |a Normale Gruppe | |
650 | 4 | |a Untergruppe | |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplement |g Mathematik |0 (DE-588)4511279-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Untergruppe |0 (DE-588)4224972-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 0 | 1 | |a Untergruppe |0 (DE-588)4224972-7 |D s |
689 | 0 | 2 | |a Komplement |g Mathematik |0 (DE-588)4511279-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-047879-2 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110480214 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA17 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030070393 | |
966 | e | |u https://doi.org/10.1515/9783110480214 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110480214 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110480214 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110480214 |l DE-Aug4 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110480214?locatt=mode:legacy |l DE-898 |p ZDB-23-DMA |q ZDB-23-DMA17 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110480214 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110480214 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110480214?locatt=mode:legacy |l DE-706 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110480214 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1815619885313556480 |
---|---|
adam_text | |
any_adam_object | |
author | Kirtland, Joseph |
author_GND | (DE-588)1188484699 |
author_facet | Kirtland, Joseph |
author_role | aut |
author_sort | Kirtland, Joseph |
author_variant | j k jk |
building | Verbundindex |
bvnumber | BV044673075 |
classification_rvk | SK 260 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783110480214 (OCoLC)1165488159 (DE-599)BVBBV044673075 |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110480214 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV044673075</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241113</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171207s2017 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110480214</subfield><subfield code="9">978-3-11-048021-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110480214</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110480214</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165488159</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044673075</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kirtland, Joseph</subfield><subfield code="0">(DE-588)1188484699</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complementation of Normal Subgroups</subfield><subfield code="b">In Finite Groups</subfield><subfield code="c">Joseph Kirtland</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (156pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 13. Sep 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Starting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian normal subgroups and formations. ContentsPrerequisitesThe Schur-Zassenhaus theorem: A bit of history and motivationAbelian and minimal normal subgroupsReduction theoremsSubgroups in the chief series, derived series, and lower nilpotent seriesNormal subgroups with abelian sylow subgroupsThe formation generationGroups with specific classes of subgroups complemented</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normale Gruppe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Untergruppe</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplement</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4511279-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Untergruppe</subfield><subfield code="0">(DE-588)4224972-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Untergruppe</subfield><subfield code="0">(DE-588)4224972-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Komplement</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4511279-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-047879-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110480214</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA17</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030070393</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110480214</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110480214</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110480214</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110480214</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110480214?locatt=mode:legacy</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA17</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110480214</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110480214</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110480214?locatt=mode:legacy</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110480214</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044673075 |
illustrated | Not Illustrated |
indexdate | 2024-11-13T15:00:52Z |
institution | BVB |
isbn | 9783110480214 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030070393 |
oclc_num | 1165488159 |
open_access_boolean | |
owner | DE-860 DE-Aug4 DE-859 DE-739 DE-1046 DE-1043 DE-858 DE-898 DE-BY-UBR DE-706 |
owner_facet | DE-860 DE-Aug4 DE-859 DE-739 DE-1046 DE-1043 DE-858 DE-898 DE-BY-UBR DE-706 |
physical | 1 online resource (156pages) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA17 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA17 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | De Gruyter |
record_format | marc |
spelling | Kirtland, Joseph (DE-588)1188484699 aut Complementation of Normal Subgroups In Finite Groups Joseph Kirtland Berlin ;Boston De Gruyter [2017] © 2017 1 online resource (156pages) txt rdacontent c rdamedia cr rdacarrier Description based on online resource; title from PDF title page (publisher's Web site, viewed 13. Sep 2017) Starting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian normal subgroups and formations. ContentsPrerequisitesThe Schur-Zassenhaus theorem: A bit of history and motivationAbelian and minimal normal subgroupsReduction theoremsSubgroups in the chief series, derived series, and lower nilpotent seriesNormal subgroups with abelian sylow subgroupsThe formation generationGroups with specific classes of subgroups complemented In English Normale Gruppe Untergruppe Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Komplement Mathematik (DE-588)4511279-4 gnd rswk-swf Untergruppe (DE-588)4224972-7 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 s Untergruppe (DE-588)4224972-7 s Komplement Mathematik (DE-588)4511279-4 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 978-3-11-047879-2 https://doi.org/10.1515/9783110480214 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kirtland, Joseph Complementation of Normal Subgroups In Finite Groups Normale Gruppe Untergruppe Endliche Gruppe (DE-588)4014651-0 gnd Komplement Mathematik (DE-588)4511279-4 gnd Untergruppe (DE-588)4224972-7 gnd |
subject_GND | (DE-588)4014651-0 (DE-588)4511279-4 (DE-588)4224972-7 |
title | Complementation of Normal Subgroups In Finite Groups |
title_auth | Complementation of Normal Subgroups In Finite Groups |
title_exact_search | Complementation of Normal Subgroups In Finite Groups |
title_full | Complementation of Normal Subgroups In Finite Groups Joseph Kirtland |
title_fullStr | Complementation of Normal Subgroups In Finite Groups Joseph Kirtland |
title_full_unstemmed | Complementation of Normal Subgroups In Finite Groups Joseph Kirtland |
title_short | Complementation of Normal Subgroups |
title_sort | complementation of normal subgroups in finite groups |
title_sub | In Finite Groups |
topic | Normale Gruppe Untergruppe Endliche Gruppe (DE-588)4014651-0 gnd Komplement Mathematik (DE-588)4511279-4 gnd Untergruppe (DE-588)4224972-7 gnd |
topic_facet | Normale Gruppe Untergruppe Endliche Gruppe Komplement Mathematik |
url | https://doi.org/10.1515/9783110480214 |
work_keys_str_mv | AT kirtlandjoseph complementationofnormalsubgroupsinfinitegroups |