Coulson and Richardson’s Chemical engineering: Volume 3B: Process Control
Front Cover -- Coulson and Richardson's Chemical Engineering: Volume 3B: Process Control -- Copyright -- Contents -- Contributors -- About Prof. Coulson -- About Prof. Richardson -- Preface -- Introduction -- Chapter 1: Introduction -- 1.1. Definition of a Chemical/Biochemical Process -- 1.1.1....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford
Elsevier Science
[2017]
|
Ausgabe: | Fourth edition |
Online-Zugang: | FHD01 |
Zusammenfassung: | Front Cover -- Coulson and Richardson's Chemical Engineering: Volume 3B: Process Control -- Copyright -- Contents -- Contributors -- About Prof. Coulson -- About Prof. Richardson -- Preface -- Introduction -- Chapter 1: Introduction -- 1.1. Definition of a Chemical/Biochemical Process -- 1.1.1. A Single Continuous Process -- 1.1.1.1. A continuous chemical plant -- 1.1.1.2. A continuous biochemical process -- 1.1.1.3. A continuous green process -- 1.1.2. A Batch and a Semibatch or a Fed-Batch Process -- 1.2. Process Dynamics -- 1.2.1. Classification of Process Variables -- 1.2.2. Dynamic Modeling -- 1.3. Process Control -- 1.3.1. Types of Control Strategies -- 1.3.1.1. Feedback control -- 1.3.1.2. Feedforward control -- 1.4. Incentives for Process Control -- 1.5. Pictorial Representation of the Control Systems -- 1.6. Problems -- References -- Chapter 2: Hardware Requirements for the Implementation of Process Control Systems -- 2.1. Sensor/Transmitter -- 2.1.1. Temperature Transducers -- 2.1.2. Pressure Transducers -- 2.1.3. Liquid or Gas Flow Rate Transducers -- 2.1.4. Liquid Level Transducers -- 2.1.5. Chemical Composition Transducers -- 2.1.6. Instrument or Transducer Accuracy -- 2.1.7. Sources of Instrument Errors -- 2.1.8. Static and Dynamic Characteristics of Transducers -- 2.2. Signal Converters -- 2.3. Transmission Lines -- 2.4. The Final Control Element -- 2.4.1. Control Valves -- 2.4.1.1. Selection and design of a control valve -- 2.4.1.2. Valve characteristic -- 2.4.1.3. The transfer function of a control valve -- 2.5. Feedback Controllers -- 2.5.1. The PID (Proportional-Integral-Derivative) Controllers -- 2.5.2. The PID Controller Law -- 2.5.3. The Discrete Version of a PID Controller -- 2.5.4. Features of the PID Controllers -- 2.5.4.1. The reset or integral windup -- 2.5.4.2. The derivative and proportional kicks 2.5.4.3. Caution in using the derivative action -- 2.5.4.4. Auto and manual modes of the controller -- 2.5.4.5. The reverse or direct controller action -- 2.6. A Demonstration Unit to Implement A Single-Input, Single-Output PID Controller Using the National InstrumentR Data A ... -- 2.7. Implementation of the Control Laws on the Distributed Control Systems -- 2.8. Problems -- References -- Chapter 3: Theoretical Process Dynamic Modeling -- 3.1. Detailed Theoretical Dynamic Modeling -- 3.2. Solving an ODE or a Set of ODEs -- 3.2.1. Solving a Linear or a Nonlinear Differential Equation in MATLAB -- 3.2.2. Solving a Linear or a Nonlinear Differential Equation on Simulink -- 3.3. Examples of Lumped Parameter Systems -- 3.3.1. A Surge Tank With Level Control -- 3.3.2. A Stirred Tank Heater With Level and Temperature Control -- 3.3.3. A Nonisothermal Continuous Stirred Tank Reactor -- 3.3.4. A CSTR With Liquid Phase Endothermic Chemical Reactions -- 3.4. Examples of Stage-Wise Systems -- 3.4.1. A Binary Tray Distillation Column -- 3.5. Examples of Distributed Parameter Systems -- 3.5.1. A Plug Flow Reactor -- 3.6. Problems -- References -- Chapter 4: Development of Linear State-Space Models and Transfer Functions for Chemical Processes -- Part A-Theoretical Development of Linear Models -- 4.1. Tools to Develop Continuous Linear State-Space and Transfer Function Dynamic Models -- 4.1.1. Linearization of Nonlinear Differential Equations -- 4.1.1.1. Linearization of nonlinear terms involving more than one independent variable -- 4.1.2. The Linear State-Space Models -- 4.1.3. Developing Transfer Function Models (T.F.) -- 4.1.3.1. Review of Laplace transform (L.T.) -- 4.1.3.2. Laplace transform of simple functions -- 4.1.3.3. Inverse Laplace transform -- Case I: Roots of P(s) are all real and distinct -- Case II: Roots of P(s) are complex conjugates Case III: P(s) has multiple roots -- 4.1.3.4. Use of Laplace transform to solve differential equations -- 4.1.3.5. Summary of Laplace transform and inverse Laplace transform -- 4.1.3.6. MATLAB commands for the calculation of Laplace transform and the inverse Laplace transform -- 4.2. The Basic Procedure to Develop the Transfer Function of SISO and MIMO Systems -- 4.3. Steps to Derive the Transfer Function (T.F.) Models -- 4.4. Transfer Function of Linear Systems -- 4.4.1. Simple Functional Forms of the Input Signals -- 4.4.2. First-Order Transfer Function Models -- 4.4.2.1. The step response of a first-order system -- 4.4.2.2. Impulse response of a first-order process -- 4.4.2.3. MATLAB and Simulink commands -- 4.4.2.4. Examples of real processes with first-order transfer functions -- 4.4.3. A Pure Capacitive or An Integrating Process -- 4.4.4. Processes With Second-Order Dynamics -- 4.4.4.1. Case I: An overdamped system, ξ>1, two distinct real roots -- 4.4.4.2. Case II: A critically damped system, ξ=1, multiple real roots -- 4.4.4.3. Case III: An underdamped system, ξ<1, two distinct complex conjugate roots with negative real parts -- 4.4.4.4. Examples of real systems that have second-order dynamics (second-order transfer functions) -- 4.4.5. Significance of the Transfer Function Poles and Zeros -- 4.4.5.1. Summary of the significance of poles and zeros of a transfer function -- 4.4.6. Transfer Functions of More Complicated Processes-An Inverse Response (A Nonminimum Phase Process), A Higher Order ... -- 4.4.6.1. Physical processes with inverse response -- 4.4.7. Processes With Nth-Order Dynamics -- 4.4.8. Transfer Function of Distributed Parameter Systems -- 4.4.9. Processes With Significant Time Delays -- 4.4.9.1. Effect of time delay in more detail -- 4.4.9.2. Approximation of higher order transfer functions by a first order plus time delay |
Beschreibung: | 1 Online-Ressource (xxvi, 601 Seiten) |
ISBN: | 9780081012246 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV044671420 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171206s2017 |||| o||u| ||||||eng d | ||
020 | |a 9780081012246 |9 978-0-08-101224-6 | ||
035 | |a (OCoLC)1015207945 | ||
035 | |a (DE-599)BVBBV044671420 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 | ||
100 | 1 | |a Rohani, Sohrab |e Verfasser |4 aut | |
245 | 1 | 0 | |a Coulson and Richardson’s Chemical engineering |b Volume 3B: Process Control |c Sohrab Rohani |
246 | 1 | 3 | |a Chemical engineering |
250 | |a Fourth edition | ||
264 | 1 | |a Oxford |b Elsevier Science |c [2017] | |
300 | |a 1 Online-Ressource (xxvi, 601 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 1 | |a Front Cover -- Coulson and Richardson's Chemical Engineering: Volume 3B: Process Control -- Copyright -- Contents -- Contributors -- About Prof. Coulson -- About Prof. Richardson -- Preface -- Introduction -- Chapter 1: Introduction -- 1.1. Definition of a Chemical/Biochemical Process -- 1.1.1. A Single Continuous Process -- 1.1.1.1. A continuous chemical plant -- 1.1.1.2. A continuous biochemical process -- 1.1.1.3. A continuous green process -- 1.1.2. A Batch and a Semibatch or a Fed-Batch Process -- 1.2. Process Dynamics -- 1.2.1. Classification of Process Variables -- 1.2.2. Dynamic Modeling -- 1.3. Process Control -- 1.3.1. Types of Control Strategies -- 1.3.1.1. Feedback control -- 1.3.1.2. Feedforward control -- 1.4. Incentives for Process Control -- 1.5. Pictorial Representation of the Control Systems -- 1.6. Problems -- References -- Chapter 2: Hardware Requirements for the Implementation of Process Control Systems -- 2.1. Sensor/Transmitter -- 2.1.1. Temperature Transducers -- 2.1.2. Pressure Transducers -- 2.1.3. Liquid or Gas Flow Rate Transducers -- 2.1.4. Liquid Level Transducers -- 2.1.5. Chemical Composition Transducers -- 2.1.6. Instrument or Transducer Accuracy -- 2.1.7. Sources of Instrument Errors -- 2.1.8. Static and Dynamic Characteristics of Transducers -- 2.2. Signal Converters -- 2.3. Transmission Lines -- 2.4. The Final Control Element -- 2.4.1. Control Valves -- 2.4.1.1. Selection and design of a control valve -- 2.4.1.2. Valve characteristic -- 2.4.1.3. The transfer function of a control valve -- 2.5. Feedback Controllers -- 2.5.1. The PID (Proportional-Integral-Derivative) Controllers -- 2.5.2. The PID Controller Law -- 2.5.3. The Discrete Version of a PID Controller -- 2.5.4. Features of the PID Controllers -- 2.5.4.1. The reset or integral windup -- 2.5.4.2. The derivative and proportional kicks | |
520 | 1 | |a 2.5.4.3. Caution in using the derivative action -- 2.5.4.4. Auto and manual modes of the controller -- 2.5.4.5. The reverse or direct controller action -- 2.6. A Demonstration Unit to Implement A Single-Input, Single-Output PID Controller Using the National InstrumentR Data A ... -- 2.7. Implementation of the Control Laws on the Distributed Control Systems -- 2.8. Problems -- References -- Chapter 3: Theoretical Process Dynamic Modeling -- 3.1. Detailed Theoretical Dynamic Modeling -- 3.2. Solving an ODE or a Set of ODEs -- 3.2.1. Solving a Linear or a Nonlinear Differential Equation in MATLAB -- 3.2.2. Solving a Linear or a Nonlinear Differential Equation on Simulink -- 3.3. Examples of Lumped Parameter Systems -- 3.3.1. A Surge Tank With Level Control -- 3.3.2. A Stirred Tank Heater With Level and Temperature Control -- 3.3.3. A Nonisothermal Continuous Stirred Tank Reactor -- 3.3.4. A CSTR With Liquid Phase Endothermic Chemical Reactions -- 3.4. Examples of Stage-Wise Systems -- 3.4.1. A Binary Tray Distillation Column -- 3.5. Examples of Distributed Parameter Systems -- 3.5.1. A Plug Flow Reactor -- 3.6. Problems -- References -- Chapter 4: Development of Linear State-Space Models and Transfer Functions for Chemical Processes -- Part A-Theoretical Development of Linear Models -- 4.1. Tools to Develop Continuous Linear State-Space and Transfer Function Dynamic Models -- 4.1.1. Linearization of Nonlinear Differential Equations -- 4.1.1.1. Linearization of nonlinear terms involving more than one independent variable -- 4.1.2. The Linear State-Space Models -- 4.1.3. Developing Transfer Function Models (T.F.) -- 4.1.3.1. Review of Laplace transform (L.T.) -- 4.1.3.2. Laplace transform of simple functions -- 4.1.3.3. Inverse Laplace transform -- Case I: Roots of P(s) are all real and distinct -- Case II: Roots of P(s) are complex conjugates | |
520 | 1 | |a Case III: P(s) has multiple roots -- 4.1.3.4. Use of Laplace transform to solve differential equations -- 4.1.3.5. Summary of Laplace transform and inverse Laplace transform -- 4.1.3.6. MATLAB commands for the calculation of Laplace transform and the inverse Laplace transform -- 4.2. The Basic Procedure to Develop the Transfer Function of SISO and MIMO Systems -- 4.3. Steps to Derive the Transfer Function (T.F.) Models -- 4.4. Transfer Function of Linear Systems -- 4.4.1. Simple Functional Forms of the Input Signals -- 4.4.2. First-Order Transfer Function Models -- 4.4.2.1. The step response of a first-order system -- 4.4.2.2. Impulse response of a first-order process -- 4.4.2.3. MATLAB and Simulink commands -- 4.4.2.4. Examples of real processes with first-order transfer functions -- 4.4.3. A Pure Capacitive or An Integrating Process -- 4.4.4. Processes With Second-Order Dynamics -- 4.4.4.1. Case I: An overdamped system, ξ>1, two distinct real roots -- 4.4.4.2. Case II: A critically damped system, ξ=1, multiple real roots -- 4.4.4.3. Case III: An underdamped system, ξ<1, two distinct complex conjugate roots with negative real parts -- 4.4.4.4. Examples of real systems that have second-order dynamics (second-order transfer functions) -- 4.4.5. Significance of the Transfer Function Poles and Zeros -- 4.4.5.1. Summary of the significance of poles and zeros of a transfer function -- 4.4.6. Transfer Functions of More Complicated Processes-An Inverse Response (A Nonminimum Phase Process), A Higher Order ... -- 4.4.6.1. Physical processes with inverse response -- 4.4.7. Processes With Nth-Order Dynamics -- 4.4.8. Transfer Function of Distributed Parameter Systems -- 4.4.9. Processes With Significant Time Delays -- 4.4.9.1. Effect of time delay in more detail -- 4.4.9.2. Approximation of higher order transfer functions by a first order plus time delay | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-08-101095-2 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030068763 | ||
966 | e | |u http://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=4986272 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178118250856448 |
---|---|
any_adam_object | |
author | Rohani, Sohrab |
author_facet | Rohani, Sohrab |
author_role | aut |
author_sort | Rohani, Sohrab |
author_variant | s r sr |
building | Verbundindex |
bvnumber | BV044671420 |
collection | ZDB-30-PQE |
ctrlnum | (OCoLC)1015207945 (DE-599)BVBBV044671420 |
edition | Fourth edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06751nmm a2200349 c 4500</leader><controlfield tag="001">BV044671420</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171206s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780081012246</subfield><subfield code="9">978-0-08-101224-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1015207945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044671420</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rohani, Sohrab</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coulson and Richardson’s Chemical engineering</subfield><subfield code="b">Volume 3B: Process Control</subfield><subfield code="c">Sohrab Rohani</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Chemical engineering</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Fourth edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Elsevier Science</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxvi, 601 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">Front Cover -- Coulson and Richardson's Chemical Engineering: Volume 3B: Process Control -- Copyright -- Contents -- Contributors -- About Prof. Coulson -- About Prof. Richardson -- Preface -- Introduction -- Chapter 1: Introduction -- 1.1. Definition of a Chemical/Biochemical Process -- 1.1.1. A Single Continuous Process -- 1.1.1.1. A continuous chemical plant -- 1.1.1.2. A continuous biochemical process -- 1.1.1.3. A continuous green process -- 1.1.2. A Batch and a Semibatch or a Fed-Batch Process -- 1.2. Process Dynamics -- 1.2.1. Classification of Process Variables -- 1.2.2. Dynamic Modeling -- 1.3. Process Control -- 1.3.1. Types of Control Strategies -- 1.3.1.1. Feedback control -- 1.3.1.2. Feedforward control -- 1.4. Incentives for Process Control -- 1.5. Pictorial Representation of the Control Systems -- 1.6. Problems -- References -- Chapter 2: Hardware Requirements for the Implementation of Process Control Systems -- 2.1. Sensor/Transmitter -- 2.1.1. Temperature Transducers -- 2.1.2. Pressure Transducers -- 2.1.3. Liquid or Gas Flow Rate Transducers -- 2.1.4. Liquid Level Transducers -- 2.1.5. Chemical Composition Transducers -- 2.1.6. Instrument or Transducer Accuracy -- 2.1.7. Sources of Instrument Errors -- 2.1.8. Static and Dynamic Characteristics of Transducers -- 2.2. Signal Converters -- 2.3. Transmission Lines -- 2.4. The Final Control Element -- 2.4.1. Control Valves -- 2.4.1.1. Selection and design of a control valve -- 2.4.1.2. Valve characteristic -- 2.4.1.3. The transfer function of a control valve -- 2.5. Feedback Controllers -- 2.5.1. The PID (Proportional-Integral-Derivative) Controllers -- 2.5.2. The PID Controller Law -- 2.5.3. The Discrete Version of a PID Controller -- 2.5.4. Features of the PID Controllers -- 2.5.4.1. The reset or integral windup -- 2.5.4.2. The derivative and proportional kicks</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">2.5.4.3. Caution in using the derivative action -- 2.5.4.4. Auto and manual modes of the controller -- 2.5.4.5. The reverse or direct controller action -- 2.6. A Demonstration Unit to Implement A Single-Input, Single-Output PID Controller Using the National InstrumentR Data A ... -- 2.7. Implementation of the Control Laws on the Distributed Control Systems -- 2.8. Problems -- References -- Chapter 3: Theoretical Process Dynamic Modeling -- 3.1. Detailed Theoretical Dynamic Modeling -- 3.2. Solving an ODE or a Set of ODEs -- 3.2.1. Solving a Linear or a Nonlinear Differential Equation in MATLAB -- 3.2.2. Solving a Linear or a Nonlinear Differential Equation on Simulink -- 3.3. Examples of Lumped Parameter Systems -- 3.3.1. A Surge Tank With Level Control -- 3.3.2. A Stirred Tank Heater With Level and Temperature Control -- 3.3.3. A Nonisothermal Continuous Stirred Tank Reactor -- 3.3.4. A CSTR With Liquid Phase Endothermic Chemical Reactions -- 3.4. Examples of Stage-Wise Systems -- 3.4.1. A Binary Tray Distillation Column -- 3.5. Examples of Distributed Parameter Systems -- 3.5.1. A Plug Flow Reactor -- 3.6. Problems -- References -- Chapter 4: Development of Linear State-Space Models and Transfer Functions for Chemical Processes -- Part A-Theoretical Development of Linear Models -- 4.1. Tools to Develop Continuous Linear State-Space and Transfer Function Dynamic Models -- 4.1.1. Linearization of Nonlinear Differential Equations -- 4.1.1.1. Linearization of nonlinear terms involving more than one independent variable -- 4.1.2. The Linear State-Space Models -- 4.1.3. Developing Transfer Function Models (T.F.) -- 4.1.3.1. Review of Laplace transform (L.T.) -- 4.1.3.2. Laplace transform of simple functions -- 4.1.3.3. Inverse Laplace transform -- Case I: Roots of P(s) are all real and distinct -- Case II: Roots of P(s) are complex conjugates</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">Case III: P(s) has multiple roots -- 4.1.3.4. Use of Laplace transform to solve differential equations -- 4.1.3.5. Summary of Laplace transform and inverse Laplace transform -- 4.1.3.6. MATLAB commands for the calculation of Laplace transform and the inverse Laplace transform -- 4.2. The Basic Procedure to Develop the Transfer Function of SISO and MIMO Systems -- 4.3. Steps to Derive the Transfer Function (T.F.) Models -- 4.4. Transfer Function of Linear Systems -- 4.4.1. Simple Functional Forms of the Input Signals -- 4.4.2. First-Order Transfer Function Models -- 4.4.2.1. The step response of a first-order system -- 4.4.2.2. Impulse response of a first-order process -- 4.4.2.3. MATLAB and Simulink commands -- 4.4.2.4. Examples of real processes with first-order transfer functions -- 4.4.3. A Pure Capacitive or An Integrating Process -- 4.4.4. Processes With Second-Order Dynamics -- 4.4.4.1. Case I: An overdamped system, ξ>1, two distinct real roots -- 4.4.4.2. Case II: A critically damped system, ξ=1, multiple real roots -- 4.4.4.3. Case III: An underdamped system, ξ<1, two distinct complex conjugate roots with negative real parts -- 4.4.4.4. Examples of real systems that have second-order dynamics (second-order transfer functions) -- 4.4.5. Significance of the Transfer Function Poles and Zeros -- 4.4.5.1. Summary of the significance of poles and zeros of a transfer function -- 4.4.6. Transfer Functions of More Complicated Processes-An Inverse Response (A Nonminimum Phase Process), A Higher Order ... -- 4.4.6.1. Physical processes with inverse response -- 4.4.7. Processes With Nth-Order Dynamics -- 4.4.8. Transfer Function of Distributed Parameter Systems -- 4.4.9. Processes With Significant Time Delays -- 4.4.9.1. Effect of time delay in more detail -- 4.4.9.2. Approximation of higher order transfer functions by a first order plus time delay</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-08-101095-2</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030068763</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=4986272</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044671420 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:58:53Z |
institution | BVB |
isbn | 9780081012246 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030068763 |
oclc_num | 1015207945 |
open_access_boolean | |
owner | DE-1050 |
owner_facet | DE-1050 |
physical | 1 Online-Ressource (xxvi, 601 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Elsevier Science |
record_format | marc |
spelling | Rohani, Sohrab Verfasser aut Coulson and Richardson’s Chemical engineering Volume 3B: Process Control Sohrab Rohani Chemical engineering Fourth edition Oxford Elsevier Science [2017] 1 Online-Ressource (xxvi, 601 Seiten) txt rdacontent c rdamedia cr rdacarrier Front Cover -- Coulson and Richardson's Chemical Engineering: Volume 3B: Process Control -- Copyright -- Contents -- Contributors -- About Prof. Coulson -- About Prof. Richardson -- Preface -- Introduction -- Chapter 1: Introduction -- 1.1. Definition of a Chemical/Biochemical Process -- 1.1.1. A Single Continuous Process -- 1.1.1.1. A continuous chemical plant -- 1.1.1.2. A continuous biochemical process -- 1.1.1.3. A continuous green process -- 1.1.2. A Batch and a Semibatch or a Fed-Batch Process -- 1.2. Process Dynamics -- 1.2.1. Classification of Process Variables -- 1.2.2. Dynamic Modeling -- 1.3. Process Control -- 1.3.1. Types of Control Strategies -- 1.3.1.1. Feedback control -- 1.3.1.2. Feedforward control -- 1.4. Incentives for Process Control -- 1.5. Pictorial Representation of the Control Systems -- 1.6. Problems -- References -- Chapter 2: Hardware Requirements for the Implementation of Process Control Systems -- 2.1. Sensor/Transmitter -- 2.1.1. Temperature Transducers -- 2.1.2. Pressure Transducers -- 2.1.3. Liquid or Gas Flow Rate Transducers -- 2.1.4. Liquid Level Transducers -- 2.1.5. Chemical Composition Transducers -- 2.1.6. Instrument or Transducer Accuracy -- 2.1.7. Sources of Instrument Errors -- 2.1.8. Static and Dynamic Characteristics of Transducers -- 2.2. Signal Converters -- 2.3. Transmission Lines -- 2.4. The Final Control Element -- 2.4.1. Control Valves -- 2.4.1.1. Selection and design of a control valve -- 2.4.1.2. Valve characteristic -- 2.4.1.3. The transfer function of a control valve -- 2.5. Feedback Controllers -- 2.5.1. The PID (Proportional-Integral-Derivative) Controllers -- 2.5.2. The PID Controller Law -- 2.5.3. The Discrete Version of a PID Controller -- 2.5.4. Features of the PID Controllers -- 2.5.4.1. The reset or integral windup -- 2.5.4.2. The derivative and proportional kicks 2.5.4.3. Caution in using the derivative action -- 2.5.4.4. Auto and manual modes of the controller -- 2.5.4.5. The reverse or direct controller action -- 2.6. A Demonstration Unit to Implement A Single-Input, Single-Output PID Controller Using the National InstrumentR Data A ... -- 2.7. Implementation of the Control Laws on the Distributed Control Systems -- 2.8. Problems -- References -- Chapter 3: Theoretical Process Dynamic Modeling -- 3.1. Detailed Theoretical Dynamic Modeling -- 3.2. Solving an ODE or a Set of ODEs -- 3.2.1. Solving a Linear or a Nonlinear Differential Equation in MATLAB -- 3.2.2. Solving a Linear or a Nonlinear Differential Equation on Simulink -- 3.3. Examples of Lumped Parameter Systems -- 3.3.1. A Surge Tank With Level Control -- 3.3.2. A Stirred Tank Heater With Level and Temperature Control -- 3.3.3. A Nonisothermal Continuous Stirred Tank Reactor -- 3.3.4. A CSTR With Liquid Phase Endothermic Chemical Reactions -- 3.4. Examples of Stage-Wise Systems -- 3.4.1. A Binary Tray Distillation Column -- 3.5. Examples of Distributed Parameter Systems -- 3.5.1. A Plug Flow Reactor -- 3.6. Problems -- References -- Chapter 4: Development of Linear State-Space Models and Transfer Functions for Chemical Processes -- Part A-Theoretical Development of Linear Models -- 4.1. Tools to Develop Continuous Linear State-Space and Transfer Function Dynamic Models -- 4.1.1. Linearization of Nonlinear Differential Equations -- 4.1.1.1. Linearization of nonlinear terms involving more than one independent variable -- 4.1.2. The Linear State-Space Models -- 4.1.3. Developing Transfer Function Models (T.F.) -- 4.1.3.1. Review of Laplace transform (L.T.) -- 4.1.3.2. Laplace transform of simple functions -- 4.1.3.3. Inverse Laplace transform -- Case I: Roots of P(s) are all real and distinct -- Case II: Roots of P(s) are complex conjugates Case III: P(s) has multiple roots -- 4.1.3.4. Use of Laplace transform to solve differential equations -- 4.1.3.5. Summary of Laplace transform and inverse Laplace transform -- 4.1.3.6. MATLAB commands for the calculation of Laplace transform and the inverse Laplace transform -- 4.2. The Basic Procedure to Develop the Transfer Function of SISO and MIMO Systems -- 4.3. Steps to Derive the Transfer Function (T.F.) Models -- 4.4. Transfer Function of Linear Systems -- 4.4.1. Simple Functional Forms of the Input Signals -- 4.4.2. First-Order Transfer Function Models -- 4.4.2.1. The step response of a first-order system -- 4.4.2.2. Impulse response of a first-order process -- 4.4.2.3. MATLAB and Simulink commands -- 4.4.2.4. Examples of real processes with first-order transfer functions -- 4.4.3. A Pure Capacitive or An Integrating Process -- 4.4.4. Processes With Second-Order Dynamics -- 4.4.4.1. Case I: An overdamped system, ξ>1, two distinct real roots -- 4.4.4.2. Case II: A critically damped system, ξ=1, multiple real roots -- 4.4.4.3. Case III: An underdamped system, ξ<1, two distinct complex conjugate roots with negative real parts -- 4.4.4.4. Examples of real systems that have second-order dynamics (second-order transfer functions) -- 4.4.5. Significance of the Transfer Function Poles and Zeros -- 4.4.5.1. Summary of the significance of poles and zeros of a transfer function -- 4.4.6. Transfer Functions of More Complicated Processes-An Inverse Response (A Nonminimum Phase Process), A Higher Order ... -- 4.4.6.1. Physical processes with inverse response -- 4.4.7. Processes With Nth-Order Dynamics -- 4.4.8. Transfer Function of Distributed Parameter Systems -- 4.4.9. Processes With Significant Time Delays -- 4.4.9.1. Effect of time delay in more detail -- 4.4.9.2. Approximation of higher order transfer functions by a first order plus time delay Erscheint auch als Druck-Ausgabe 978-0-08-101095-2 |
spellingShingle | Rohani, Sohrab Coulson and Richardson’s Chemical engineering Volume 3B: Process Control |
title | Coulson and Richardson’s Chemical engineering Volume 3B: Process Control |
title_alt | Chemical engineering |
title_auth | Coulson and Richardson’s Chemical engineering Volume 3B: Process Control |
title_exact_search | Coulson and Richardson’s Chemical engineering Volume 3B: Process Control |
title_full | Coulson and Richardson’s Chemical engineering Volume 3B: Process Control Sohrab Rohani |
title_fullStr | Coulson and Richardson’s Chemical engineering Volume 3B: Process Control Sohrab Rohani |
title_full_unstemmed | Coulson and Richardson’s Chemical engineering Volume 3B: Process Control Sohrab Rohani |
title_short | Coulson and Richardson’s Chemical engineering |
title_sort | coulson and richardson s chemical engineering volume 3b process control |
title_sub | Volume 3B: Process Control |
work_keys_str_mv | AT rohanisohrab coulsonandrichardsonschemicalengineeringvolume3bprocesscontrol AT rohanisohrab chemicalengineering |