Machine vision algorithms and applications:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2018]
|
Ausgabe: | 2nd, completely revised and enlarged edition |
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41365-2/ Inhaltsverzeichnis |
Beschreibung: | xxii, 494 Seiten Illustrationen, Diagramme |
ISBN: | 9783527413652 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV044670270 | ||
003 | DE-604 | ||
005 | 20200701 | ||
007 | t | ||
008 | 171206s2018 gw a||| |||| 00||| eng d | ||
015 | |a 17,N41 |2 dnb | ||
016 | 7 | |a 1140659693 |2 DE-101 | |
020 | |a 9783527413652 |c pbk |9 978-3-527-41365-2 | ||
024 | 3 | |a 9783527413652 | |
028 | 5 | 2 | |a Bestellnummer: 1141365 000 |
035 | |a (OCoLC)1022089388 | ||
035 | |a (DE-599)DNB1140659693 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-M347 |a DE-1050 |a DE-11 |a DE-355 |a DE-29T |a DE-634 |a DE-91G |a DE-573 |a DE-703 |a DE-898 |a DE-861 | ||
082 | 0 | |a 530 |2 23 | |
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
084 | |a DAT 760f |2 stub | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Steger, Carsten |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine vision algorithms and applications |c Carsten Steger, Markus Ulrich, and Christian Wiedemann |
250 | |a 2nd, completely revised and enlarged edition | ||
264 | 1 | |a Weinheim |b Wiley-VCH |c [2018] | |
300 | |a xxii, 494 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
653 | |a Algorithmen u. Datenstrukturen | ||
653 | |a Algorithms & Data Structures | ||
653 | |a Bildgebende Systeme u. Verfahren | ||
653 | |a Bildgebendes Verfahren | ||
653 | |a Computer Science | ||
653 | |a Electrical & Electronics Engineering | ||
653 | |a Elektrotechnik u. Elektronik | ||
653 | |a Imaging Systems & Technology | ||
653 | |a Informatik | ||
653 | |a Maschinelles Sehen | ||
653 | |a Mustererkennung | ||
653 | |a Optics & Photonics | ||
653 | |a Optik u. Photonik | ||
653 | |a Physics | ||
653 | |a Physik | ||
689 | 0 | 0 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |D s |
689 | 0 | 1 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ulrich, Markus |e Verfasser |4 aut | |
700 | 1 | |a Wiedemann, Christian |e Verfasser |4 aut | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-81290-5 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-81289-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, MOBI |z 978-3-527-81291-2 |
780 | 0 | 0 | |i Vorangegangen ist |z 9783527407347 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41365-2/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030067628&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030067628 |
Datensatz im Suchindex
_version_ | 1804178116170481664 |
---|---|
adam_text | CONTENTS
LIST OF ABBREVIATIONS
XV
PREFACE TO THE SECOND EDITION
XIX
PREFACE TO THE FIRST EDITION
XXI
1 INTRODUCTION 1
2 IMAGE ACQUISITION
5
2.1 ILLUM
INATION...........................................................................................
5
2.1.1 ELECTROMAGNETIC R A D IA TIO N
.....................................................
5
2.1.2 TYPES OF LIGHT S O U R C E S
............................................................ 7
2.1.3 INTERACTION OF LIGHT AND M A TTE R
...............................................
8
2.1.4 USING THE SPECTRAL COMPOSITION OF THE ILLU M IN ATIO N
..............
10
2.1.5 USING THE DIRECTIONAL PROPERTIES OF THE ILLUM INATION.............
12
2.1.5.1 DIFFUSE BRIGHT-FIELD FRONT LIGHT ILLUMINATION . . . 13
2.1.5.2 DIRECTED BRIGHT-FIELD FRONT LIGHT ILLUMINATION . . . 14
2.1.5.3 DIRECTED DARK-FIELD FRONT LIGHT ILLUMINATION . . . 15
2.1.5.4 DIFFUSE BRIGHT-FIELD BACK LIGHT ILLUMINATION . . . 16
2.1.5.5 TELECENTRIC BRIGHT-FIELD BACK LIGHT ILLUMINATION . 17
2.2 L E N S E S
.....................................................................................................
18
2.2.1 PINHOLE CAMERAS
..................................................................... 18
2.2.2 GAUSSIAN O P TIC S
........................................................................
19
2.2.2.1 R EFRACTIO N
.................................................................. 19
2 2 2 .2 THICK LENS M O D E L
.....................................................
20
2.2.2.3 APERTURE STOP AND P U P I L S
......................................... 22
2.2.2.4 RELATION OF THE PINHOLE MODEL TO GAUSSIAN OPTICS . 24
2.2.3 DEPTH OF F IE LD
...........................................................................
25
2.2.4 TELECENTRIC L
ENSES.....................................................................
28
2.2.4.1 OBJECT-SIDE TELECENTRIC L E N SE S
...............................
28
2.2.4.2 BILATERAL TELECENTRIC L
ENSES...................................... 30
2.2.4.3 IMAGE-SIDE TELECENTRIC L E N S E S
...............................
31
2.2.4.4 PROJECTION CHARACTERISTICS OF L E N S E S
......................
32
2.2.5 TILT LENSES AND THE SCHEIMPFLUG P RIN C IP LE
............................
32
2.2.6 LENS A B E RRA TIO N S
......................................................................
36
2.2.6.1 SPHERICAL A B E RRA TIO N
................................................
36
2.2.6.2 C O M A
.........................................................................
36
2.2.6.3 A STIGM ATISM
...............................................................
37
2.2.6.4 CURVATURE OF F IE LD
......................................................
37
2.2.6.5 D ISTO RTIO N
..................................................................
37
2.2.6.6 CHROMATIC A BERRATION
...............................................
39
22.6.1 EDGE-SPREAD FUNCTION
...............................................
39
2.2.6.S V
IGNETTING...................................................................
40
2.3 C A M E RA
S..................................................................................................
41
2.3.1 CCD S E N S O R S
............................................................................
41
2.3.1.1 LINE
SENSORS................................................................
41
2.3.1.2 FULL FRAME ARRAY S EN SO
RS.......................................... 43
2.3.1.3 FRAME TRANSFER S E N SO
RS............................................. 43
2.3.1.4 INTERLINE TRANSFER S EN SO
RS.......................................... 44
2.3.1.5 READOUT M O D E S
.........................................................
46
2.3.2 CMOS S E N S O R S
.........................................................................
46
2.3.2.1 SENSOR A RCHITECTURE
...................................................
46
2.3.2.2 ROLLING AND GLOBAL SHUTTERS
......................................
47
2.3.3 COLOR CAM
ERAS............................................................................
48
2.3.3.1 SPECTRAL RESPONSE OF MONOCHROME CAMERAS .... 48
2.3.3.2 SINGLE-CHIP C A M E RA S
................................................
49
2.3.3.3 THREE-CHIP CAMERAS
................................................ 50
2.3.3.4 SPECTRAL RESPONSE OF COLOR C A M E RA S
.......................
50
2.3.4 SENSOR S IZ E S
...............................................................................
50
2.3.5 CAMERA P E RFO RM A N C E
...............................................................
52
2.3.5.1 NOISE
.........................................................................
52
2.3.5.2 SIGNAL-TO-NOISE R A TIO
...............................................
53
2.3.5.3 DYNAMIC R A N G E
......................................................... 54
2.3.5.4 NONUNIFORM
ITIES......................................................... 54
2.4 CAMERA-COMPUTER
INTERFACES...............................................................
55
2.4.1 ANALOG VIDEO S IG N A LS
................................................................
56
2.4.1.1 ANALOG VIDEO STANDARDS
.......................................... 56
2.4.1.2 ANALOG FRAME G
RABBERS............................................. 58
2.4.2 DIGITAL VIDEO S IG N A LS
............................................................... 60
2.4.2.1 CAMERA L IN K
................................................................ 61
2.4.2.2 CAMERA LINK H S
......................................................... 62
2.4.2.3 COAX PRESS
..................................................................
64
2.4.2.4 IEEE 1394
..................................................................
65
2.4.2.5 USB 2 . 0
.....................................................................
67
2A 2.6 USB3 VISION
............................................................. 68
2A.2.1 GIGE V IS IO N
................................................................ 69
2.4.3 GENERIC INTERFACES
.....................................................................
72
2.4.3.1 G E N I C A M
................................................................... 72
2.4.3.2 GENICAM G E N T L
.....................................................
77
2.4.4 IMAGE ACQUISITION M O D E
S.......................................................... 79
2.5 3D IMAGE ACQUISITION D E V IC E S
............................................................ 82
2.5.1 STEREO
SENSORS............................................................................
82
2.5.2 SHEET OF LIGHT SENSORS
............................................................ 84
2.5.3 STRUCTURED LIGHT S E N S O R S
......................................................... 86
2.5.3.1 PATTERN P RO JECTIO N
...................................................... 87
2.5.3.2 GRAY C O D E S
............................................................... 88
2.5.3.3 FRINGE P RO JE C TIO N
.....................................................
90
2.5.3.4 HYBRID S Y STE M
S......................................................... 91
2.5.4 TIME-OF-FLIGHT C AM
ERAS............................................................ 91
2.5.4.1 CONTINUOUS-WAVE-MODULATED TIME-OF-FLIGHT
C AM
ERAS.....................................................................
92
2.5.4.2 PULSE-MODULATED TIME-OF-FLIGHT C A M E RA S ............. 93
3 M ACHINE V ISION A LG O RITH M S 97
3.1 FUNDAMENTAL DATA S TRU CTU
RES............................................................... 97
3.1.1 IM AG
ES........................................................................................
97
3.1.2 R E G IO N S
.....................................................................................
98
3.1.3 SUBPIXEL-PRECISE C O N TO U R S
......................................................... 101
3.2 IMAGE ENHANCEM
ENT..................................................................................101
3.2.1 GRAY VALUE TRANSFORMATIONS
......................................................102
3.2.1.1 CONTRAST ENHANCEMENT
...............................................
102
3.2.1.2 CONTRAST N ORM ALIZATION
...............................................
102
3.2.1.3 ROBUST CONTRAST N ORM
ALIZATION...................................103
3.2.2 RADIOMETRIC CALIBRATION
...............................................................
105
3.2.2.1 CHART-BASED RADIOMETRIC CALIBRATION
.........................
105
3.2.2.2 CHARTLESS RADIOMETRIC C A LIB RA TIO N
............................
106
3.2.3 IMAGE S M O O TH IN G
.........................................................................110
3.2.3.1 TEMPORAL AVERAGING
.....................................................
I L L
3.2.3.2 MEAN F I L T E R
..................................................................112
3.2.3.3 BORDER TREATMENT OF F ILTE RS
.........................................113
3.2.3.4 RUNTIME COMPLEXITY OF F I L T E R S
...................................
114
3.2.3.5 LINEAR F I L T E R S
..............................................................
115
3.2.3.6 FREQUENCY RESPONSE OF THE MEAN FILTER
...................
116
3.23.1 GAUSSIAN FILTER
............................................................ 117
3.2.3.8 NOISE SUPPRESSION BY LINEAR FILTERS .........................118
3.2.3.9 MEDIAN AND RANK F I L T E R S
............................................
119
3.2.4 FOURIER TRANSFORM
.........................................................................120
3.2.4.1 CONTINUOUS FOURIER T RA N SFO RM
..................................
120
3.2.4.2 DISCRETE FOURIER T RANSFORM
.........................................
123
3.3 GEOMETRIC TRANSFORMATIONS
.....................................................................
126
3.3.1 AFFINE T RANSFORM
ATIONS................................................................126
3.3.1.1 PROJECTIVE TRANSFORM ATIONS
........................................
127
3.3.2 IMAGE T RANSFORM
ATIONS................................................................128
3.3.2.1 NEAREST-NEIGHBOR INTERPOLATION
..................................
128
3.3.2.2 BILINEAR IN
TERPOLATION................................................... 129
3.3.2.3 BICUBIC IN TERP O LATIO N
..................................................
130
3.3.2.4 SMOOTHING TO AVOID A LIA SIN G
......................................132
3.3.3 PROJECTIVE IMAGE TRANSFORMATIONS
.............................................133
3.3.4 POLAR
TRANSFORMATIONS...................................................................133
3.4 IMAGE
SEGMENTATION...............................................................................
135
3.4.1 THRESHOLDING
...............................................................................
135
3.4.1.1 GLOBAL THRESHOLDING
..................................................
135
3.4.1.2 AUTOMATIC THRESHOLD S ELECTIO N
...................................136
3.4.1.3 DYNAMIC T H RESH O LD IN G
...............................................
138
3.4.1.4 VARIATION M O D E
L............................................................141
3.4.2 EXTRACTION OF CONNECTED COMPONENTS
......................................
144
3.4.3 SUBPIXEL-PRECISE T HRESH O LD IN G
................................................... 147
3.5 FEATURE
EXTRACTION......................................................................................149
3.5.1 REGION F E A TU RE
S............................................................................
149
3.5.1.1 A R E A
...............................................................................149
3.5.1.2 MOMENTS
.....................................................................
150
3.5.1.3 ELLIPSE PARAM
ETERS.........................................................151
3.5.1.4 ENCLOSING RECTANGLES AND C IRCLES
...............................
153
3.5.1.5 CONTOUR L E N G TH
............................................................154
3.5.2 GRAY VALUE F
EATURES......................................................................154
3.5.2.1 STATISTICAL FEATURES
.....................................................
154
3.5.2.2 MOMENTS
.....................................................................
155
3.5.2.3 ELLIPSE PARAM
ETERS.........................................................155
3.5.2.4 COMPARISON OF REGION AND GRAY VALUE MOMENTS . 155
3.5.3 CONTOUR F E A TU R E S
.........................................................................
158
3.5.3.1 CONTOUR LENGTH, ENCLOSING RECTANGLES AND CIRCLES . 158
3.5.3.2 MOMENTS
.....................................................................
158
3.6 M ORPHOLOGY
...........................................................................................
159
3.6.1 REGION M
ORPHOLOGY......................................................................159
3.6.1.1 SET O
PERATIONS...............................................................
159
3.6.1.2 MINKOWSKI ADDITION AND D ILATION
...............................
161
3.6.1.3 MINKOWSKI SUBTRACTION AND E R O S IO N
.........................
163
3.6.1.4 REGION B O U N D A RIE S
...................................................... 166
3.6.1.5 HIT-OR-MISS T RA N S FO RM
...............................................
167
3.6.1.6 OPENING AND C LO S IN G
..................................................
168
3.6.1.7 S K ELETO N
........................................................................
172
3.6.1.8 DISTANCE T RAN SFO RM
.....................................................
173
3.6.2 GRAY VALUE MORPHOLOGY
............................................................
175
3.6.2.1 MINKOWSKI ADDITION AND D ILATION
...............................
175
3.6.2.2 MINKOWSKI SUBTRACTION AND E R O S IO N
.........................
176
3.6.2.3 OPENING AND C LO S IN G
..................................................
177
3.6.2.4 MORPHOLOGICAL G RADIENT
...............................................
179
3.7 EDGE E X TRACTIO N
.....................................................................................180
3.7.1 DEFINITION OF E D G E S
.................................................................. 180
3.7.1.1 DEFINITION OF EDGES IN I D
.........................................
180
3.7.1.2 DEFINITION OF EDGES IN 2 D
.............................................181
3.7.2 ID EDGE E X TRACTIO N
......................................................................183
3.7.2.1 DISCRETE DERIVATIVES
..................................................
184
3.12.2 SMOOTHING PERPENDICULAR TO A P RO
FILE..........................185
3.12.3 OPTIMAL EDGE FILTERS
...................................................186
3.7.2.4 PIXEL-ACCURATE EDGE EXTRACTION
....................................
188
3.7.2.5 SUBPIXEL-ACCURATE EDGE
EXTRACTION.............................189
3.7.3 2D EDGE E X TRACTIO N
......................................................................189
3.7.3.1 DISCRETE
DERIVATIVES.......................................................190
3.1.32 OPTIMAL EDGE FILTERS
....................................................191
3.7.3.3 NON-MAXIMUM SUPPRESSION
......................................
192
3.7.3.4 HYSTERESIS
THRESHOLDING................................................194
3.7.3.5 SUBPIXEL-ACCURATE EDGE EXTRACTION
.........................
194
3.7.4 ACCURACY AND PRECISION OF E D G E S
................................................196
3.7.4.1 DEFINITION OF ACCURACY AND
PRECISION..........................197
3.7.4.2 ANALYTICAL EDGE ACCURACY AND P RE C ISIO N
...................
198
3.1 A.3 EDGE ACCURACY AND PRECISION ON REAL IMAGES . . . 199
3.8 SEGMENTATION AND FITTING OF GEOMETRIC P RIM ITIVES
............................
203
3.8.1 FITTING L IN E S
..................................................................................204
3.8.1.1 LEAST-SQUARES LINE F I T T I N G
.........................................204
3.8.1.2 ROBUST LINE F I T T I N G
.....................................................
205
3.8.2 FITTING C IRC LE S
...............................................................................208
3.8.2.1 LEAST-SQUARES CIRCLE
FITTING.........................................208
3.8.2.2 ROBUST CIRCLE F I T T I N G
..................................................
209
3.8.3 FITTING ELLIPSES
...........................................................................
210
3.8.3.1 LEAST-SQUARES ELLIPSE F ITTIN G
......................................210
3.8.3.2 ROBUST ELLIPSE F ITTIN G
..................................................
210
3.8.4 SEGMENTATION OF
CONTOURS............................................................211
3.8.4.1 SEGMENTATION OF CONTOURS INTO L IN E S
.........................
211
3.8.4.2 SEGMENTATION OF CONTOURS INTO LINES, CIRCLES, AND
E L LIP S E S
........................................................................
213
3.9 CAMERA C ALIB RATIO N
..............................................................................
215
3.9.1 CAMERA MODELS FOR AREA SCAN CAMERAS WITH REGULAR LENSES 216
3.9.1.1 EXTERIOR O
RIENTATION..................................................... 217
3.9.1.2 PROJECTION FROM 3D TO 2 D
...........................................
219
3.9.1.3 LENS D ISTORTIONS
...........................................................
219
3.9.1.4 IMAGE COORDINATES
.....................................................221
3.9.2 CAMERA MODELS FOR AREA SCAN CAMERAS WITH TILT LENSES . . 222
3.9.2.1 LENS D
ISTORTIONS...........................................................
222
3.9.2.2 MODELING THE POSE OF THE TILTED IMAGE PLANE .... 222
3.9.2.3 IMAGE-SPACE TELECENTRIC L E N S E S
...............................
223
3.9.2.4 IMAGE-SPACE PERSPECTIVE L E N S E S
...............................
224
3.9.3 CAMERA MODEL FOR LINE SCAN C A M E RA S
......................................
225
3.9.3.1 CAMERA M O TIO N
............................................................ 225
3.9.3.2 EXTERIOR O
RIENTATION......................................................226
3.9.3.3 INTERIOR O RIE N TA TIO N
......................................................227
3.9.3.4 NONLINEARITIES OF THE LINE SCAN CAMERA MODEL . . . 229
3.9.4 CALIBRATION P R O C E S S
.....................................................................
230
3.9.4.1 CALIBRATION T A RG E
T.........................................................230
3.9.4.2 SINGLE-IMAGE CAMERA
CALIBRATION................................232
3.9.4.3 DEGENERACIES WHEN CALIBRATING WITH A SINGLE IMAGE 233
3.9A 4 MULTI-IMAGE CAMERA C ALIB RATIO N
................................234
3.9.4.5 DEGENERACIES OCCURRING WITH TILT L E N S E S
.............
234
3.9.4.6 EXCLUDING PARAMETERS FROM THE OPTIMIZATION . . . 235
3.9.5 WORLD COORDINATES FROM SINGLE IM AGES
......................................
235
3.9.5.1 TELECENTRIC C AM
ERAS......................................................236
3.9.5.2 PERSPECTIVE CAMERAS
...................................................236
3.9.5.3 LINE-SCAN C A M E RA S
......................................................238
3.9.5.4 IMAGE R
ECTIFICATION......................................................238
3.9.6 ACCURACY OF THE CAMERA P A RA M E TE RS
.........................................
238
3.9.6.1 INFLUENCE OF THE NUMBER OF CALIBRATION IMAGES ON
THE ACCURACY
...............................................................
239
3.9.6.2 INFLUENCE OF THE FOCUS SETTING ON THE CAMERA
PARAM ETERS
.....................................................................
240
3.9.6.3 INFLUENCE OF THE DIAPHRAGM SETTING ON THE CAMERA
PARAM
ETERS......................................................................240
3.10 3D RECONSTRUCTION
..................................................................................
241
3.10.1 STEREO RECONSTRUCTION
..................................................................
241
3.10.1.1 STEREO GEOMETRY
.........................................................242
3.10.1.2 STEREO C
ALIBRATION.........................................................243
3.10.1.3 EPIPOLAR G E O M E TRY
......................................................244
3.10.1.4 IMAGE R
ECTIFICATION......................................................247
3.10.1.5 D
ISPARITY.........................................................................249
3.10.1.6 STEREO M
ATCHING............................................................ 250
3.10.1.7 EFFECT OF WINDOW SIZE
...............................................
252
3.10.1.8 ROBUST STEREO M ATCHING
...............................................
253
3.10.1.9 SPACETIME STEREO M ATCH IN G
.........................................
254
3.10.2 SHEET OF LIGHT
RECONSTRUCTION......................................................254
3.10.2.1 EXTRACTION OF THE LASER LINE
......................................
255
3.10.2.2 SENSOR CALIBRATION AND 3D R ECONSTRUCTION
.............
256
3.10.3 STRUCTURED LIGHT R ECO N STRU CTIO N
...............................................
257
3.10.3.1 DECODING THE S T R I P E S
...................................................257
3.10.3.2 SENSOR CALIBRATION AND 3D R ECONSTRUCTION
................
258
3.11 TEMPLATE M A TC H IN G
..................................................................................
262
3.11.1 GRAY-VALUE-BASED TEMPLATE M A TC H IN G
....................................
263
3.11.1.1 SIMILARITY MEASURES BASED ON GRAY VALUE
DIFFERENCES
..................................................................
263
3.11.1.2 NORMALIZED C ROSS-C
ORRELATION...................................264
3.11.1.3 EFFICIENT EVALUATION OF THE SIMILARITY MEASURES . . 266
3.11.2 MATCHING USING IMAGE P Y RAM ID S
...............................................
267
3.11.2.1 IMAGE P Y RAM ID
S............................................................268
3.11.2.2 HIERARCHICAL S E A R C H
......................................................270
3.11.3 SUBPIXEL-ACCURATE GRAY-VALUE-BASED M A TC H IN G
......................
271
3.11.4 TEMPLATE MATCHING WITH ROTATIONS AND S CALIN G S
......................
272
3.11.5 ROBUST TEMPLATE M A TC H IN G
.........................................................273
3.11.5.1 MEAN SQUARED EDGE D
ISTANCE......................................274
3.11.5.2 HAUSDORFF D IS TA N C E
.....................................................
276
3.11.5.3 GENERALIZED HOUGH T RA N SFO RM
...................................277
3.11.5.4 GEOMETRIC H A S H IN G
.....................................................
281
3.11.5.5 MATCHING GEOMETRIC PRIM
ITIVES...................................283
3.11.5.6 SHAPE-BASED M A TC H IN G
...............................................
286
3.12 3D OBJECT R ECO G N ITIO N
........................................................................
292
3.12.1 DEFORMABLE M
ATCHING..................................................................
293
3.12.1.1 PRINCIPLE OF DEFORMABLE M A TC H IN G
............................
293
3.12.1.2 MODEL G
ENERATION.........................................................295
3.12.1.3 SIMILARITY M E A S U R E
......................................................295
3.12.1.4 HIERARCHICAL S E A R C H
......................................................297
3.12.1.5 LEAST-SQUARES POSE REFINEM
ENT...................................297
3.12.1.6 3D POSE E STIM ATIO N
......................................................297
3.12.1.7 RECOGNITION OF LOCALLY DEFORMED O B JE C TS
................
300
3.12.2 SHAPE-BASED 3D M A TC H IN G
.........................................................302
3.12.2.1 VIEW-BASED APPROACH
...............................................
303
3.12.2.2 RESTRICTING THE POSE R A N G E
.........................................
306
3.12.2.3 HIERARCHICAL M O D E L
......................................................307
3.12.2.4 2D MODEL G ENERATION
..................................................
308
3.12.2.5 PERSPECTIVE C O RRE C TIO N
...............................................
310
3.12.2.6 LEAST-SQUARES POSE R EFINEM
ENT...................................311
3.12.2.7 E X A M P LE S
.....................................................................
312
3.12.3 SURFACE-BASED 3D MATCHING
......................................................313
3.12.3.1 GLOBAL MODEL DESCRIPTION
............................................
314
3.12.3.2 LOCAL P A RA M E TE
RS.........................................................316
3.12.3.3 V O TIN G
...........................................................................
318
3.12.3.4 LEAST-SQUARES POSE REFINEM
ENT...................................319
3.12.3.5 EXTENSION FOR RECOGNIZING DEFORMED OBJECTS . . . 321
3.12.3.6 EXTENSION FOR MULTIMODAL D A TA
...................................321
3.13 HAND-EYE CALIBRATION
...........................................................................
323
3.13.1
INTRODUCTION..................................................................................323
3.13.2 PROBLEM D E FIN ITIO N
.....................................................................
325
3.13.3 DUAL QUATERNIONS AND SCREW T H E O RY
.........................................
327
3.13.3.1 Q
UATERNIONS..................................................................
327
3.13.3.2 S CREW S
...........................................................................
329
3.13.3.3 DUAL N UM
BERS...............................................................330
3.13.3.4 DUAL Q U ATERN IO N
S.......................................................330
3.13.4 LINEAR HAND-EYE C
ALIBRATION......................................................331
3.13.5 NONLINEAR HAND-EYE C ALIB RATIO N
...............................................
334
3.13.6 HAND-EYE CALIBRATION OF SCARA R O B O T S
................................335
3.14 OPTICAL CHARACTER R E C O G N ITIO N
...............................................................
337
3.14.1 CHARACTER SEGM ENTATION
...............................................................
338
3.14.2 FEATURE
EXTRACTION.........................................................................339
3.15 C LASSIFICATIO N
............................................................................................342
3.15.1 DECISION T
HEORY............................................................................343
3.15.1.1 BAYES DECISION RULE
...................................................343
3.15.1.2 CLASSIFIER T Y P E S
............................................................ 345
3.15.1.3 TRAINING, TEST, AND VALIDATION S E T S
.............................345
3.15.1.4 NOVELTY D
ETECTION......................................................... 345
3.15.2 CLASSIFIERS BASED ON ESTIMATING CLASS P RO B A B ILITIE S
.............
346
3.15.2.1 K NEAREST-NEIGHBOR C LA SSIFIE RS
...................................
347
3.15.2.2 GAUSSIAN MIXTURE MODEL C LA SSIFIE RS
.........................
347
3.15.3 CLASSIFIERS BASED ON CONSTRUCTING SEPARATING HYPERSURFACES 350
3.15.3.1 SINGLE-LAYER P ERCEP TRO N S
............................................
350
3.15.3.2 MULTILAYER PERCEPTRONS
...............................................
352
3.15.3.3 SUPPORT VECTOR M ACH IN ES
............................................
358
3.15.3.4 CONVOLUTIONAL NEURAL N
ETWORKS...................................365
3.15.4 EXAMPLE OF USING CLASSIFIERS FOR O C R
......................................
369
4 M ACHINE V ISION A P P LIC A TIO N S 371
4.1 WAFER D I C I N G
............................................................................................371
4.1.1 DETERMINING THE WIDTH AND HEIGHT OF THE D IE S
.........................
372
4.1.2 DETERMINING THE POSITION OF THE D I E S
........................................
374
4.1.3 EXERCISES
.....................................................................................
376
4.2 READING OF SERIAL N U M B E RS
.....................................................................
377
4.2.1 RECTIFYING THE IMAGE USING A POLAR T RANSFORM ATION
................
377
4.2.2 SEGMENTING THE C H A RA C TE
RS.........................................................380
4.2.3 READING THE C H A RA C TE RS
...............................................................
382
4.2.4 EXERCISES
.....................................................................................
382
4.3 INSPECTION OF SAW B LA D E S
.........................................................................383
4.3.1 EXTRACTING THE SAW BLADE C O N TO U R
............................................
384
4.3.2 EXTRACTING THE TEETH OF THE SAW B L A D E
......................................
385
4.3.3 MEASURING THE ANGLES OF THE TEETH OF THE SAW B LADE
................
386
4.3.4 E X E RC ISE
........................................................................................
388
4.4 PRINT IN SP E C TIO N
........................................................................................
388
4.4.1 CREATING THE MODEL OF THE CORRECT PRINT ON THE RELAY .... 389
4.4.2 CREATING THE MODEL TO ALIGN THE R ELAYS
......................................
390
4.4.3 PERFORMING THE PRINT
INSPECTION...................................................391
4.4.4 EXERCISES
.....................................................................................
392
4.5 INSPECTION OF BALL GRID A R R A Y S
...............................................................
392
4.5.1 FINDING BALLS WITH SHAPE D EFECTS
..............................................
393
4.5.2 CONSTRUCTING A GEOMETRIC MODEL OF A CORRECT B G A
.............
395
4.5.3 FINDING MISSING AND EXTRANEOUS B A L L S
......................................397
4.5.4 FINDING DISPLACED B A LLS
............................................................... 398
4.5.5 EXERCISES
.....................................................................................400
4.6 SURFACE
INSPECTION..................................................................................400
4.6.1 SEGMENTING THE DOORKNOB
.........................................................401
4.6.2 FINDING THE SURFACE TO INSPECT
..................................................
402
4.6.3 DETECTING D E FE C TS
........................................................................
405
4.6.4 EXERCISES
.....................................................................................407
4.7 MEASUREMENT OF SPARK P L U G S
..................................................................408
4.7.1 CALIBRATING THE C A M E RA
...............................................................409
4.7.2 DETERMINING THE POSITION OF THE SPARK PLUG
............................
410
4.7.3 PERFORMING THE M EASUREM ENT
.....................................................
411
4.7.4 EXERCISES
.....................................................................................413
4.8 MOLDING FLASH D E TE C TIO N
........................................................................
414
4.8.1 MOLDING FLASH DETECTION USING REGION MORPHOLOGY .... 414
4.8.2 MOLDING FLASH DETECTION WITH SUBPIXEL-PRECISE CONTOURS . . 418
4.8.3 E X E RC ISE
........................................................................................
421
4.9 INSPECTION OF PUNCHED S H E E TS
.................................................................. 421
4.9.1 EXTRACTING THE BOUNDARIES OF THE PUNCHED SHEETS
...................
422
4.9.2 PERFORMING THE
INSPECTION............................................................424
4.9.3 EXERCISES
.....................................................................................425
4.10 3D PLANE RECONSTRUCTION WITH S TE RE O
..................................................
425
4.10.1 CALIBRATING THE STEREO SETUP
..................................................
426
4.10.2 PERFORMING THE 3D RECONSTRUCTION AND IN SP ECTIO N
...................
428
4.10.3 E X E RC ISE
........................................................................................
432
4.11 POSE VERIFICATION OF
RESISTORS..................................................................
432
4.11.1 CREATING MODELS OF THE R E SISTO RS
...............................................
433
4.11.2 VERIFYING THE POSE AND TYPE OF THE R ESISTORS
............................
436
4.11.3 EXERCISES
.....................................................................................438
4.12 CLASSIFICATION OF NON-WOVEN F A B RIC S
.....................................................
438
4.12.1 TRAINING THE
CLASSIFIER..................................................................
438
4.12.2 PERFORMING THE TEXTURE
CLASSIFICATION.........................................440
4.12.3 E X E RC ISE
........................................................................................443
4.13 SURFACE COM
PARISON..................................................................................443
4.13.1 CREATING THE REFERENCE MODEL
..................................................
443
4.13.2 RECONSTRUCTING AND ALIGNING O
BJECTS.........................................445
4.13.3 COMPARING OBJECTS AND CLASSIFYING E RRO RS
...............................
445
4.13.4 E X E RC ISE
........................................................................................450
4.14 3D
PICK-AND-PLACE.....................................................................................451
4.14.1 PERFORMING THE HAND-EYE C A LIB RA TIO N
......................................452
4.14.2 DEFINING THE GRASPING P O IN T
........................................................
455
4.14.3 PICKING AND PLACING OBJECTS
.....................................................
457
4.14.4 EXERCISES
.....................................................................................458
REFERENCES
461
INDEX
475
|
any_adam_object | 1 |
author | Steger, Carsten Ulrich, Markus Wiedemann, Christian |
author_facet | Steger, Carsten Ulrich, Markus Wiedemann, Christian |
author_role | aut aut aut |
author_sort | Steger, Carsten |
author_variant | c s cs m u mu c w cw |
building | Verbundindex |
bvnumber | BV044670270 |
classification_rvk | ST 330 |
classification_tum | DAT 760f |
ctrlnum | (OCoLC)1022089388 (DE-599)DNB1140659693 |
dewey-full | 530 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530 |
dewey-search | 530 |
dewey-sort | 3530 |
dewey-tens | 530 - Physics |
discipline | Physik Informatik |
edition | 2nd, completely revised and enlarged edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02805nam a22007218c 4500</leader><controlfield tag="001">BV044670270</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200701 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">171206s2018 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">17,N41</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1140659693</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527413652</subfield><subfield code="c">pbk</subfield><subfield code="9">978-3-527-41365-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527413652</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1141365 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1022089388</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1140659693</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M347</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 760f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Steger, Carsten</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine vision algorithms and applications</subfield><subfield code="c">Carsten Steger, Markus Ulrich, and Christian Wiedemann</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd, completely revised and enlarged edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxii, 494 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algorithmen u. Datenstrukturen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algorithms & Data Structures</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bildgebende Systeme u. Verfahren</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bildgebendes Verfahren</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computer Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electrical & Electronics Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elektrotechnik u. Elektronik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Imaging Systems & Technology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Informatik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Maschinelles Sehen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mustererkennung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Optics & Photonics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Optik u. Photonik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Physik</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ulrich, Markus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiedemann, Christian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-81290-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-81289-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, MOBI</subfield><subfield code="z">978-3-527-81291-2</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Vorangegangen ist</subfield><subfield code="z">9783527407347</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41365-2/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030067628&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030067628</subfield></datafield></record></collection> |
id | DE-604.BV044670270 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:58:51Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527413652 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030067628 |
oclc_num | 1022089388 |
open_access_boolean | |
owner | DE-M347 DE-1050 DE-11 DE-355 DE-BY-UBR DE-29T DE-634 DE-91G DE-BY-TUM DE-573 DE-703 DE-898 DE-BY-UBR DE-861 |
owner_facet | DE-M347 DE-1050 DE-11 DE-355 DE-BY-UBR DE-29T DE-634 DE-91G DE-BY-TUM DE-573 DE-703 DE-898 DE-BY-UBR DE-861 |
physical | xxii, 494 Seiten Illustrationen, Diagramme |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Steger, Carsten Verfasser aut Machine vision algorithms and applications Carsten Steger, Markus Ulrich, and Christian Wiedemann 2nd, completely revised and enlarged edition Weinheim Wiley-VCH [2018] xxii, 494 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Maschinelles Sehen (DE-588)4129594-8 gnd rswk-swf Mustererkennung (DE-588)4040936-3 gnd rswk-swf Algorithmen u. Datenstrukturen Algorithms & Data Structures Bildgebende Systeme u. Verfahren Bildgebendes Verfahren Computer Science Electrical & Electronics Engineering Elektrotechnik u. Elektronik Imaging Systems & Technology Informatik Maschinelles Sehen Mustererkennung Optics & Photonics Optik u. Photonik Physics Physik Maschinelles Sehen (DE-588)4129594-8 s Mustererkennung (DE-588)4040936-3 s DE-604 Ulrich, Markus Verfasser aut Wiedemann, Christian Verfasser aut Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-81290-5 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-81289-9 Erscheint auch als Online-Ausgabe, MOBI 978-3-527-81291-2 Vorangegangen ist 9783527407347 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41365-2/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030067628&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Steger, Carsten Ulrich, Markus Wiedemann, Christian Machine vision algorithms and applications Maschinelles Sehen (DE-588)4129594-8 gnd Mustererkennung (DE-588)4040936-3 gnd |
subject_GND | (DE-588)4129594-8 (DE-588)4040936-3 |
title | Machine vision algorithms and applications |
title_auth | Machine vision algorithms and applications |
title_exact_search | Machine vision algorithms and applications |
title_full | Machine vision algorithms and applications Carsten Steger, Markus Ulrich, and Christian Wiedemann |
title_fullStr | Machine vision algorithms and applications Carsten Steger, Markus Ulrich, and Christian Wiedemann |
title_full_unstemmed | Machine vision algorithms and applications Carsten Steger, Markus Ulrich, and Christian Wiedemann |
title_short | Machine vision algorithms and applications |
title_sort | machine vision algorithms and applications |
topic | Maschinelles Sehen (DE-588)4129594-8 gnd Mustererkennung (DE-588)4040936-3 gnd |
topic_facet | Maschinelles Sehen Mustererkennung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41365-2/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030067628&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT stegercarsten machinevisionalgorithmsandapplications AT ulrichmarkus machinevisionalgorithmsandapplications AT wiedemannchristian machinevisionalgorithmsandapplications AT wileyvch machinevisionalgorithmsandapplications |