Lectures on Lie groups:
"This volume consists of nine lectures on selected topics of Lie group theory. We provide the readers a concise introduction as well as a comprehensive "tour of revisiting" the remarkable achievements of S Lie, W Killing, É Cartan and H Weyl on structural and classification theory of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Co. Pte Ltd.
c2017
|
Ausgabe: | 2nd ed |
Schriftenreihe: | Series on university mathematics
volume 9 |
Schlagworte: | |
Online-Zugang: | FHN01 TUM01 Volltext |
Zusammenfassung: | "This volume consists of nine lectures on selected topics of Lie group theory. We provide the readers a concise introduction as well as a comprehensive "tour of revisiting" the remarkable achievements of S Lie, W Killing, É Cartan and H Weyl on structural and classification theory of semi-simple Lie groups, Lie algebras and their representations; and also the wonderful duet of Cartan's theory on Lie groups and symmetric spaces. With the benefit of retrospective hindsight, mainly inspired by the outstanding contribution of H Weyl in the special case of compact connected Lie groups, we develop the above theory via a route quite different from the original methods engaged by most other books. We begin our revisiting with the compact theory which is much simpler than that of the general semi-simple Lie theory; mainly due to the well fittings between the Frobenius–Schur character theory and the maximal tori theorem of É Cartan together with Weyl's reduction (cf. Lectures 1–4). It is a wonderful reality of the Lie theory that the clear-cut orbital geometry of the adjoint action of compact Lie groups on themselves (i.e. the geometry of conjugacy classes) is not only the key to understand the compact theory, but it actually already constitutes the central core of the entire semi-simple theory, as well as that of the symmetric spaces (cf. Lectures 5–9). This is the main reason that makes the succeeding generalizations to the semi-simple Lie theory, and then further to the Cartan theory on Lie groups and symmetric spaces, conceptually quite natural, and technically rather straightforward."--Publisher's website |
Beschreibung: | Title from PDF title page (viewed June 10, 2017) |
Beschreibung: | 1 online resource (161 p.) ill |
ISBN: | 9789814740722 |
DOI: | 10.1142/9912 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044640888 | ||
003 | DE-604 | ||
005 | 20180920 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2017 |||| o||u| ||||||eng d | ||
020 | |a 9789814740722 |9 978-981-4740-72-2 | ||
024 | 7 | |a 10.1142/9912 |2 doi | |
035 | |a (ZDB-124-WOP)00009912 | ||
035 | |a (OCoLC)1012729438 | ||
035 | |a (DE-599)BVBBV044640888 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-92 |a DE-91 | ||
082 | 0 | |a 512/.482 |2 23 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a MAT 225f |2 stub | ||
100 | 1 | |a Hsiang, Wu Yi |d 1937- |e Verfasser |0 (DE-588)172146119 |4 aut | |
245 | 1 | 0 | |a Lectures on Lie groups |c by Wu-Yi Hsiang |
250 | |a 2nd ed | ||
264 | 1 | |a Singapore |b World Scientific Publishing Co. Pte Ltd. |c c2017 | |
300 | |a 1 online resource (161 p.) |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Series on university mathematics |v volume 9 | |
500 | |a Title from PDF title page (viewed June 10, 2017) | ||
520 | |a "This volume consists of nine lectures on selected topics of Lie group theory. We provide the readers a concise introduction as well as a comprehensive "tour of revisiting" the remarkable achievements of S Lie, W Killing, É Cartan and H Weyl on structural and classification theory of semi-simple Lie groups, Lie algebras and their representations; and also the wonderful duet of Cartan's theory on Lie groups and symmetric spaces. With the benefit of retrospective hindsight, mainly inspired by the outstanding contribution of H Weyl in the special case of compact connected Lie groups, we develop the above theory via a route quite different from the original methods engaged by most other books. We begin our revisiting with the compact theory which is much simpler than that of the general semi-simple Lie theory; mainly due to the well fittings between the Frobenius–Schur character theory and the maximal tori theorem of É Cartan together with Weyl's reduction (cf. Lectures 1–4). It is a wonderful reality of the Lie theory that the clear-cut orbital geometry of the adjoint action of compact Lie groups on themselves (i.e. the geometry of conjugacy classes) is not only the key to understand the compact theory, but it actually already constitutes the central core of the entire semi-simple theory, as well as that of the symmetric spaces (cf. Lectures 5–9). This is the main reason that makes the succeeding generalizations to the semi-simple Lie theory, and then further to the Cartan theory on Lie groups and symmetric spaces, conceptually quite natural, and technically rather straightforward."--Publisher's website | ||
650 | 4 | |a Lie groups | |
650 | 4 | |a Lie algebras | |
650 | 4 | |a Electronic books | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Typ-Gruppe |0 (DE-588)4167650-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Typ-Gruppe |0 (DE-588)4167650-6 |D s |
689 | 0 | 1 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Series on university mathematics |v volume 9 |w (DE-604)BV045202321 |9 9 | |
856 | 4 | 0 | |u https://doi.org/10.1142/9912 |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030038860 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/9912#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/9912 |l TUM01 |p ZDB-124-WOP |q TUM_Einzelkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178061086687232 |
---|---|
any_adam_object | |
author | Hsiang, Wu Yi 1937- |
author_GND | (DE-588)172146119 |
author_facet | Hsiang, Wu Yi 1937- |
author_role | aut |
author_sort | Hsiang, Wu Yi 1937- |
author_variant | w y h wy wyh |
building | Verbundindex |
bvnumber | BV044640888 |
classification_rvk | SK 340 |
classification_tum | MAT 225f |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00009912 (OCoLC)1012729438 (DE-599)BVBBV044640888 |
dewey-full | 512/.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.482 |
dewey-search | 512/.482 |
dewey-sort | 3512 3482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1142/9912 |
edition | 2nd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03663nmm a2200553zcb4500</leader><controlfield tag="001">BV044640888</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180920 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814740722</subfield><subfield code="9">978-981-4740-72-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/9912</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00009912</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012729438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044640888</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hsiang, Wu Yi</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172146119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Lie groups</subfield><subfield code="c">by Wu-Yi Hsiang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Co. Pte Ltd.</subfield><subfield code="c">c2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (161 p.)</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on university mathematics</subfield><subfield code="v">volume 9</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed June 10, 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This volume consists of nine lectures on selected topics of Lie group theory. We provide the readers a concise introduction as well as a comprehensive "tour of revisiting" the remarkable achievements of S Lie, W Killing, É Cartan and H Weyl on structural and classification theory of semi-simple Lie groups, Lie algebras and their representations; and also the wonderful duet of Cartan's theory on Lie groups and symmetric spaces. With the benefit of retrospective hindsight, mainly inspired by the outstanding contribution of H Weyl in the special case of compact connected Lie groups, we develop the above theory via a route quite different from the original methods engaged by most other books. We begin our revisiting with the compact theory which is much simpler than that of the general semi-simple Lie theory; mainly due to the well fittings between the Frobenius–Schur character theory and the maximal tori theorem of É Cartan together with Weyl's reduction (cf. Lectures 1–4). It is a wonderful reality of the Lie theory that the clear-cut orbital geometry of the adjoint action of compact Lie groups on themselves (i.e. the geometry of conjugacy classes) is not only the key to understand the compact theory, but it actually already constitutes the central core of the entire semi-simple theory, as well as that of the symmetric spaces (cf. Lectures 5–9). This is the main reason that makes the succeeding generalizations to the semi-simple Lie theory, and then further to the Cartan theory on Lie groups and symmetric spaces, conceptually quite natural, and technically rather straightforward."--Publisher's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Typ-Gruppe</subfield><subfield code="0">(DE-588)4167650-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Typ-Gruppe</subfield><subfield code="0">(DE-588)4167650-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on university mathematics</subfield><subfield code="v">volume 9</subfield><subfield code="w">(DE-604)BV045202321</subfield><subfield code="9">9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1142/9912</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030038860</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/9912#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/9912</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044640888 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:59Z |
institution | BVB |
isbn | 9789814740722 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030038860 |
oclc_num | 1012729438 |
open_access_boolean | |
owner | DE-92 DE-91 DE-BY-TUM |
owner_facet | DE-92 DE-91 DE-BY-TUM |
physical | 1 online resource (161 p.) ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP ZDB-124-WOP TUM_Einzelkauf |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | World Scientific Publishing Co. Pte Ltd. |
record_format | marc |
series | Series on university mathematics |
series2 | Series on university mathematics |
spelling | Hsiang, Wu Yi 1937- Verfasser (DE-588)172146119 aut Lectures on Lie groups by Wu-Yi Hsiang 2nd ed Singapore World Scientific Publishing Co. Pte Ltd. c2017 1 online resource (161 p.) ill txt rdacontent c rdamedia cr rdacarrier Series on university mathematics volume 9 Title from PDF title page (viewed June 10, 2017) "This volume consists of nine lectures on selected topics of Lie group theory. We provide the readers a concise introduction as well as a comprehensive "tour of revisiting" the remarkable achievements of S Lie, W Killing, É Cartan and H Weyl on structural and classification theory of semi-simple Lie groups, Lie algebras and their representations; and also the wonderful duet of Cartan's theory on Lie groups and symmetric spaces. With the benefit of retrospective hindsight, mainly inspired by the outstanding contribution of H Weyl in the special case of compact connected Lie groups, we develop the above theory via a route quite different from the original methods engaged by most other books. We begin our revisiting with the compact theory which is much simpler than that of the general semi-simple Lie theory; mainly due to the well fittings between the Frobenius–Schur character theory and the maximal tori theorem of É Cartan together with Weyl's reduction (cf. Lectures 1–4). It is a wonderful reality of the Lie theory that the clear-cut orbital geometry of the adjoint action of compact Lie groups on themselves (i.e. the geometry of conjugacy classes) is not only the key to understand the compact theory, but it actually already constitutes the central core of the entire semi-simple theory, as well as that of the symmetric spaces (cf. Lectures 5–9). This is the main reason that makes the succeeding generalizations to the semi-simple Lie theory, and then further to the Cartan theory on Lie groups and symmetric spaces, conceptually quite natural, and technically rather straightforward."--Publisher's website Lie groups Lie algebras Electronic books Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Typ-Gruppe (DE-588)4167650-6 gnd rswk-swf Lie-Typ-Gruppe (DE-588)4167650-6 s Lie-Algebra (DE-588)4130355-6 s DE-604 Lie-Gruppe (DE-588)4035695-4 s Series on university mathematics volume 9 (DE-604)BV045202321 9 https://doi.org/10.1142/9912 Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Hsiang, Wu Yi 1937- Lectures on Lie groups Series on university mathematics Lie groups Lie algebras Electronic books Lie-Gruppe (DE-588)4035695-4 gnd Lie-Algebra (DE-588)4130355-6 gnd Lie-Typ-Gruppe (DE-588)4167650-6 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4130355-6 (DE-588)4167650-6 |
title | Lectures on Lie groups |
title_auth | Lectures on Lie groups |
title_exact_search | Lectures on Lie groups |
title_full | Lectures on Lie groups by Wu-Yi Hsiang |
title_fullStr | Lectures on Lie groups by Wu-Yi Hsiang |
title_full_unstemmed | Lectures on Lie groups by Wu-Yi Hsiang |
title_short | Lectures on Lie groups |
title_sort | lectures on lie groups |
topic | Lie groups Lie algebras Electronic books Lie-Gruppe (DE-588)4035695-4 gnd Lie-Algebra (DE-588)4130355-6 gnd Lie-Typ-Gruppe (DE-588)4167650-6 gnd |
topic_facet | Lie groups Lie algebras Electronic books Lie-Gruppe Lie-Algebra Lie-Typ-Gruppe |
url | https://doi.org/10.1142/9912 |
volume_link | (DE-604)BV045202321 |
work_keys_str_mv | AT hsiangwuyi lecturesonliegroups |