Nonlinear interpolation and boundary value problems:
"This book is devoted to the study of solutions of nonlinear ODE boundary value problems as nonlinear interpolation problems. In 1967, Lasota and Opial showed that, under suitable hypotheses, if solutions of a second-order nonlinear differential equation passing through two distinct points are...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Co. Pte. Ltd.
© 2016
|
Schriftenreihe: | Trends in abstract and applied analysis
volume 2 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | "This book is devoted to the study of solutions of nonlinear ODE boundary value problems as nonlinear interpolation problems. In 1967, Lasota and Opial showed that, under suitable hypotheses, if solutions of a second-order nonlinear differential equation passing through two distinct points are unique, when they exist, then, in fact, a solution passing through two distinct points does exist. That result, coupled with the pioneering work of Philip Hartman on what was then called unrestricted n-parameter families has stimulated 50 years of rapid development in the study of solutions of boundary value problems as nonlinear interpolation problems. The purpose of this book is two-fold. First, the results that have been generated in the past 50 years are collected for the first time to produce a comprehensive and coherent treatment of what is now a well-defined area of study in the qualitative theory of ordinary differential equations. Second, methods and technical tools are sufficiently exposed so that the interested reader can contribute to the study of nonlinear interpolation"-- |
Beschreibung: | Title from PDF file title page (viewed February 13, 2016) |
Beschreibung: | 1 online resource (xii, 236 p.) |
ISBN: | 9789814733489 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044640864 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2016 |||| o||u| ||||||eng d | ||
020 | |a 9789814733489 |c ebook |9 978-981-4733-48-9 | ||
024 | 7 | |a 10.1142/9877 |2 doi | |
035 | |a (ZDB-124-WOP)00009877 | ||
035 | |a (OCoLC)988733269 | ||
035 | |a (DE-599)BVBBV044640864 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515/.35 |2 23 | |
100 | 1 | |a Eloe, Paul W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonlinear interpolation and boundary value problems |c Paul W. Eloe, Johnny Henderson |
264 | 1 | |a Singapore |b World Scientific Publishing Co. Pte. Ltd. |c © 2016 | |
300 | |a 1 online resource (xii, 236 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Trends in abstract and applied analysis |v volume 2 | |
500 | |a Title from PDF file title page (viewed February 13, 2016) | ||
520 | |a "This book is devoted to the study of solutions of nonlinear ODE boundary value problems as nonlinear interpolation problems. In 1967, Lasota and Opial showed that, under suitable hypotheses, if solutions of a second-order nonlinear differential equation passing through two distinct points are unique, when they exist, then, in fact, a solution passing through two distinct points does exist. That result, coupled with the pioneering work of Philip Hartman on what was then called unrestricted n-parameter families has stimulated 50 years of rapid development in the study of solutions of boundary value problems as nonlinear interpolation problems. The purpose of this book is two-fold. First, the results that have been generated in the past 50 years are collected for the first time to produce a comprehensive and coherent treatment of what is now a well-defined area of study in the qualitative theory of ordinary differential equations. Second, methods and technical tools are sufficiently exposed so that the interested reader can contribute to the study of nonlinear interpolation"-- | ||
650 | 4 | |a Boundary value problems | |
650 | 4 | |a Differential equations | |
650 | 0 | 7 | |a Nichtlineare gewöhnliche Differentialgleichung |0 (DE-588)4478411-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Interpolation |0 (DE-588)4162121-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare gewöhnliche Differentialgleichung |0 (DE-588)4478411-9 |D s |
689 | 0 | 1 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | 2 | |a Interpolation |0 (DE-588)4162121-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Henderson, Johnny |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/9877#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030038836 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/9877#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178061034258432 |
---|---|
any_adam_object | |
author | Eloe, Paul W. |
author_facet | Eloe, Paul W. |
author_role | aut |
author_sort | Eloe, Paul W. |
author_variant | p w e pw pwe |
building | Verbundindex |
bvnumber | BV044640864 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00009877 (OCoLC)988733269 (DE-599)BVBBV044640864 |
dewey-full | 515/.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.35 |
dewey-search | 515/.35 |
dewey-sort | 3515 235 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03096nmm a2200493zcb4500</leader><controlfield tag="001">BV044640864</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814733489</subfield><subfield code="c">ebook</subfield><subfield code="9">978-981-4733-48-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/9877</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00009877</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)988733269</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044640864</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eloe, Paul W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear interpolation and boundary value problems</subfield><subfield code="c">Paul W. Eloe, Johnny Henderson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Co. Pte. Ltd.</subfield><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 236 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Trends in abstract and applied analysis</subfield><subfield code="v">volume 2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF file title page (viewed February 13, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book is devoted to the study of solutions of nonlinear ODE boundary value problems as nonlinear interpolation problems. In 1967, Lasota and Opial showed that, under suitable hypotheses, if solutions of a second-order nonlinear differential equation passing through two distinct points are unique, when they exist, then, in fact, a solution passing through two distinct points does exist. That result, coupled with the pioneering work of Philip Hartman on what was then called unrestricted n-parameter families has stimulated 50 years of rapid development in the study of solutions of boundary value problems as nonlinear interpolation problems. The purpose of this book is two-fold. First, the results that have been generated in the past 50 years are collected for the first time to produce a comprehensive and coherent treatment of what is now a well-defined area of study in the qualitative theory of ordinary differential equations. Second, methods and technical tools are sufficiently exposed so that the interested reader can contribute to the study of nonlinear interpolation"--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4478411-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4478411-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Henderson, Johnny</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/9877#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030038836</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/9877#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044640864 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:58Z |
institution | BVB |
isbn | 9789814733489 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030038836 |
oclc_num | 988733269 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | 1 online resource (xii, 236 p.) |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | World Scientific Publishing Co. Pte. Ltd. |
record_format | marc |
series2 | Trends in abstract and applied analysis |
spelling | Eloe, Paul W. Verfasser aut Nonlinear interpolation and boundary value problems Paul W. Eloe, Johnny Henderson Singapore World Scientific Publishing Co. Pte. Ltd. © 2016 1 online resource (xii, 236 p.) txt rdacontent c rdamedia cr rdacarrier Trends in abstract and applied analysis volume 2 Title from PDF file title page (viewed February 13, 2016) "This book is devoted to the study of solutions of nonlinear ODE boundary value problems as nonlinear interpolation problems. In 1967, Lasota and Opial showed that, under suitable hypotheses, if solutions of a second-order nonlinear differential equation passing through two distinct points are unique, when they exist, then, in fact, a solution passing through two distinct points does exist. That result, coupled with the pioneering work of Philip Hartman on what was then called unrestricted n-parameter families has stimulated 50 years of rapid development in the study of solutions of boundary value problems as nonlinear interpolation problems. The purpose of this book is two-fold. First, the results that have been generated in the past 50 years are collected for the first time to produce a comprehensive and coherent treatment of what is now a well-defined area of study in the qualitative theory of ordinary differential equations. Second, methods and technical tools are sufficiently exposed so that the interested reader can contribute to the study of nonlinear interpolation"-- Boundary value problems Differential equations Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 gnd rswk-swf Interpolation (DE-588)4162121-9 gnd rswk-swf Randwertproblem (DE-588)4048395-2 gnd rswk-swf Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 s Randwertproblem (DE-588)4048395-2 s Interpolation (DE-588)4162121-9 s 1\p DE-604 Henderson, Johnny Sonstige oth http://www.worldscientific.com/worldscibooks/10.1142/9877#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Eloe, Paul W. Nonlinear interpolation and boundary value problems Boundary value problems Differential equations Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 gnd Interpolation (DE-588)4162121-9 gnd Randwertproblem (DE-588)4048395-2 gnd |
subject_GND | (DE-588)4478411-9 (DE-588)4162121-9 (DE-588)4048395-2 |
title | Nonlinear interpolation and boundary value problems |
title_auth | Nonlinear interpolation and boundary value problems |
title_exact_search | Nonlinear interpolation and boundary value problems |
title_full | Nonlinear interpolation and boundary value problems Paul W. Eloe, Johnny Henderson |
title_fullStr | Nonlinear interpolation and boundary value problems Paul W. Eloe, Johnny Henderson |
title_full_unstemmed | Nonlinear interpolation and boundary value problems Paul W. Eloe, Johnny Henderson |
title_short | Nonlinear interpolation and boundary value problems |
title_sort | nonlinear interpolation and boundary value problems |
topic | Boundary value problems Differential equations Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 gnd Interpolation (DE-588)4162121-9 gnd Randwertproblem (DE-588)4048395-2 gnd |
topic_facet | Boundary value problems Differential equations Nichtlineare gewöhnliche Differentialgleichung Interpolation Randwertproblem |
url | http://www.worldscientific.com/worldscibooks/10.1142/9877#t=toc |
work_keys_str_mv | AT eloepaulw nonlinearinterpolationandboundaryvalueproblems AT hendersonjohnny nonlinearinterpolationandboundaryvalueproblems |