The classical orthogonal polynomials:
"This book defines sets of orthogonal polynomials and derives a number of properties satisfied by any such set. It continues by describing the classical orthogonal polynomials and the additional properties they have. The first chapter defines the orthogonality condition for two functions. It th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Co. Pte. Ltd.
c2016
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | "This book defines sets of orthogonal polynomials and derives a number of properties satisfied by any such set. It continues by describing the classical orthogonal polynomials and the additional properties they have. The first chapter defines the orthogonality condition for two functions. It then gives an iterative process to produce a set of polynomials which are orthogonal to one another and then describes a number of properties satisfied by any set of orthogonal polynomials. The classical orthogonal polynomials arise when the weight function in the orthogonality condition has a particular form. These polynomials have a further set of properties and in particular satisfy a second order differential equation. Each subsequent chapter investigates the properties of a particular polynomial set starting from its differential equation."-- |
Beschreibung: | Title from PDF file title page (viewed November 13, 2015) |
Beschreibung: | 1 online resource (xii, 164 p.) ill. (some col.) |
ISBN: | 9789814704045 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044640755 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2016 |||| o||u| ||||||eng d | ||
020 | |a 9789814704045 |c ebook |9 978-981-4704-04-5 | ||
024 | 7 | |a 10.1142/9700 |2 doi | |
035 | |a (ZDB-124-WOP)00009700 | ||
035 | |a (OCoLC)988734132 | ||
035 | |a (DE-599)BVBBV044640755 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515/.55 |2 23 | |
100 | 1 | |a Doman, Brian George Spencer |d 1936- |e Verfasser |4 aut | |
245 | 1 | 0 | |a The classical orthogonal polynomials |c Brian George Spencer Doman |
264 | 1 | |a Singapore |b World Scientific Publishing Co. Pte. Ltd. |c c2016 | |
300 | |a 1 online resource (xii, 164 p.) |b ill. (some col.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from PDF file title page (viewed November 13, 2015) | ||
520 | |a "This book defines sets of orthogonal polynomials and derives a number of properties satisfied by any such set. It continues by describing the classical orthogonal polynomials and the additional properties they have. The first chapter defines the orthogonality condition for two functions. It then gives an iterative process to produce a set of polynomials which are orthogonal to one another and then describes a number of properties satisfied by any set of orthogonal polynomials. The classical orthogonal polynomials arise when the weight function in the orthogonality condition has a particular form. These polynomials have a further set of properties and in particular satisfy a second order differential equation. Each subsequent chapter investigates the properties of a particular polynomial set starting from its differential equation."-- | ||
650 | 4 | |a Orthogonal polynomials | |
650 | 4 | |a Polynomials | |
650 | 0 | 7 | |a Polynom |0 (DE-588)4046711-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/9700#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030038726 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/9700#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178060815106048 |
---|---|
any_adam_object | |
author | Doman, Brian George Spencer 1936- |
author_facet | Doman, Brian George Spencer 1936- |
author_role | aut |
author_sort | Doman, Brian George Spencer 1936- |
author_variant | b g s d bgs bgsd |
building | Verbundindex |
bvnumber | BV044640755 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00009700 (OCoLC)988734132 (DE-599)BVBBV044640755 |
dewey-full | 515/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.55 |
dewey-search | 515/.55 |
dewey-sort | 3515 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02430nmm a2200421zc 4500</leader><controlfield tag="001">BV044640755</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814704045</subfield><subfield code="c">ebook</subfield><subfield code="9">978-981-4704-04-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/9700</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00009700</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)988734132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044640755</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Doman, Brian George Spencer</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The classical orthogonal polynomials</subfield><subfield code="c">Brian George Spencer Doman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Co. Pte. Ltd.</subfield><subfield code="c">c2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 164 p.)</subfield><subfield code="b">ill. (some col.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF file title page (viewed November 13, 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book defines sets of orthogonal polynomials and derives a number of properties satisfied by any such set. It continues by describing the classical orthogonal polynomials and the additional properties they have. The first chapter defines the orthogonality condition for two functions. It then gives an iterative process to produce a set of polynomials which are orthogonal to one another and then describes a number of properties satisfied by any set of orthogonal polynomials. The classical orthogonal polynomials arise when the weight function in the orthogonality condition has a particular form. These polynomials have a further set of properties and in particular satisfy a second order differential equation. Each subsequent chapter investigates the properties of a particular polynomial set starting from its differential equation."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/9700#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030038726</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/9700#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044640755 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:57:58Z |
institution | BVB |
isbn | 9789814704045 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030038726 |
oclc_num | 988734132 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | 1 online resource (xii, 164 p.) ill. (some col.) |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | World Scientific Publishing Co. Pte. Ltd. |
record_format | marc |
spelling | Doman, Brian George Spencer 1936- Verfasser aut The classical orthogonal polynomials Brian George Spencer Doman Singapore World Scientific Publishing Co. Pte. Ltd. c2016 1 online resource (xii, 164 p.) ill. (some col.) txt rdacontent c rdamedia cr rdacarrier Title from PDF file title page (viewed November 13, 2015) "This book defines sets of orthogonal polynomials and derives a number of properties satisfied by any such set. It continues by describing the classical orthogonal polynomials and the additional properties they have. The first chapter defines the orthogonality condition for two functions. It then gives an iterative process to produce a set of polynomials which are orthogonal to one another and then describes a number of properties satisfied by any set of orthogonal polynomials. The classical orthogonal polynomials arise when the weight function in the orthogonality condition has a particular form. These polynomials have a further set of properties and in particular satisfy a second order differential equation. Each subsequent chapter investigates the properties of a particular polynomial set starting from its differential equation."-- Orthogonal polynomials Polynomials Polynom (DE-588)4046711-9 gnd rswk-swf Polynom (DE-588)4046711-9 s 1\p DE-604 http://www.worldscientific.com/worldscibooks/10.1142/9700#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Doman, Brian George Spencer 1936- The classical orthogonal polynomials Orthogonal polynomials Polynomials Polynom (DE-588)4046711-9 gnd |
subject_GND | (DE-588)4046711-9 |
title | The classical orthogonal polynomials |
title_auth | The classical orthogonal polynomials |
title_exact_search | The classical orthogonal polynomials |
title_full | The classical orthogonal polynomials Brian George Spencer Doman |
title_fullStr | The classical orthogonal polynomials Brian George Spencer Doman |
title_full_unstemmed | The classical orthogonal polynomials Brian George Spencer Doman |
title_short | The classical orthogonal polynomials |
title_sort | the classical orthogonal polynomials |
topic | Orthogonal polynomials Polynomials Polynom (DE-588)4046711-9 gnd |
topic_facet | Orthogonal polynomials Polynomials Polynom |
url | http://www.worldscientific.com/worldscibooks/10.1142/9700#t=toc |
work_keys_str_mv | AT domanbriangeorgespencer theclassicalorthogonalpolynomials |