Lecture notes on knot invariants:
"The volume is focused on the basic calculation skills of various knot invariants defined from topology and geometry. It presents the detailed Hecke algebra and braid representation to illustrate the original Jones polynomial (rather than the algebraic formal definition many other books and res...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Co. Pte. Ltd.
c2016
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | "The volume is focused on the basic calculation skills of various knot invariants defined from topology and geometry. It presents the detailed Hecke algebra and braid representation to illustrate the original Jones polynomial (rather than the algebraic formal definition many other books and research articles use) and provides self-contained proofs of the Tait conjecture (one of the big achievements from the Jones invariant). It also presents explicit computations to the Casson–Lin invariant via braid representations. With the approach of an explicit computational point of view on knot invariants, this user-friendly volume will benefit readers to easily understand low-dimensional topology from examples and computations, rather than only knowing terminologies and theorems."-- |
Beschreibung: | Title from PDF file title page (viewed October 13, 2015) |
Beschreibung: | 1 online resource (xii, 232 p.) ill. (some col.) |
ISBN: | 9789814675970 9814675970 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044640680 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2016 |||| o||u| ||||||eng d | ||
020 | |a 9789814675970 |c ebook |9 978-981-4675-97-0 | ||
020 | |a 9814675970 |c ebook |9 981-4675-97-0 | ||
024 | 7 | |a 10.1142/9595 |2 doi | |
035 | |a (ZDB-124-WOP)00009595 | ||
035 | |a (OCoLC)988733704 | ||
035 | |a (DE-599)BVBBV044640680 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 514/.2242 |2 23 | |
100 | 1 | |a Li, Weiping |d 1963- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lecture notes on knot invariants |c by Weiping Li (Southwest Jiaotong University, China & Oklahoma State University, USA) |
246 | 1 | 3 | |a Knot invariants |
264 | 1 | |a Singapore |b World Scientific Publishing Co. Pte. Ltd. |c c2016 | |
300 | |a 1 online resource (xii, 232 p.) |b ill. (some col.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from PDF file title page (viewed October 13, 2015) | ||
520 | |a "The volume is focused on the basic calculation skills of various knot invariants defined from topology and geometry. It presents the detailed Hecke algebra and braid representation to illustrate the original Jones polynomial (rather than the algebraic formal definition many other books and research articles use) and provides self-contained proofs of the Tait conjecture (one of the big achievements from the Jones invariant). It also presents explicit computations to the Casson–Lin invariant via braid representations. With the approach of an explicit computational point of view on knot invariants, this user-friendly volume will benefit readers to easily understand low-dimensional topology from examples and computations, rather than only knowing terminologies and theorems."-- | ||
650 | 4 | |a Knot theory | |
650 | 4 | |a Braid theory | |
650 | 4 | |a Low-dimensional topology | |
650 | 4 | |a Alexander ideals | |
650 | 4 | |a Knot polynomials | |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/9595#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030038651 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/9595#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178060656771072 |
---|---|
any_adam_object | |
author | Li, Weiping 1963- |
author_facet | Li, Weiping 1963- |
author_role | aut |
author_sort | Li, Weiping 1963- |
author_variant | w l wl |
building | Verbundindex |
bvnumber | BV044640680 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00009595 (OCoLC)988733704 (DE-599)BVBBV044640680 |
dewey-full | 514/.2242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.2242 |
dewey-search | 514/.2242 |
dewey-sort | 3514 42242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02366nmm a2200433zc 4500</leader><controlfield tag="001">BV044640680</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814675970</subfield><subfield code="c">ebook</subfield><subfield code="9">978-981-4675-97-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814675970</subfield><subfield code="c">ebook</subfield><subfield code="9">981-4675-97-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/9595</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00009595</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)988733704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044640680</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.2242</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Weiping</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lecture notes on knot invariants</subfield><subfield code="c">by Weiping Li (Southwest Jiaotong University, China & Oklahoma State University, USA)</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Knot invariants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Co. Pte. Ltd.</subfield><subfield code="c">c2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 232 p.)</subfield><subfield code="b">ill. (some col.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF file title page (viewed October 13, 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The volume is focused on the basic calculation skills of various knot invariants defined from topology and geometry. It presents the detailed Hecke algebra and braid representation to illustrate the original Jones polynomial (rather than the algebraic formal definition many other books and research articles use) and provides self-contained proofs of the Tait conjecture (one of the big achievements from the Jones invariant). It also presents explicit computations to the Casson–Lin invariant via braid representations. With the approach of an explicit computational point of view on knot invariants, this user-friendly volume will benefit readers to easily understand low-dimensional topology from examples and computations, rather than only knowing terminologies and theorems."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knot theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Braid theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-dimensional topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alexander ideals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knot polynomials</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/9595#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030038651</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/9595#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044640680 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:57:58Z |
institution | BVB |
isbn | 9789814675970 9814675970 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030038651 |
oclc_num | 988733704 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | 1 online resource (xii, 232 p.) ill. (some col.) |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | World Scientific Publishing Co. Pte. Ltd. |
record_format | marc |
spelling | Li, Weiping 1963- Verfasser aut Lecture notes on knot invariants by Weiping Li (Southwest Jiaotong University, China & Oklahoma State University, USA) Knot invariants Singapore World Scientific Publishing Co. Pte. Ltd. c2016 1 online resource (xii, 232 p.) ill. (some col.) txt rdacontent c rdamedia cr rdacarrier Title from PDF file title page (viewed October 13, 2015) "The volume is focused on the basic calculation skills of various knot invariants defined from topology and geometry. It presents the detailed Hecke algebra and braid representation to illustrate the original Jones polynomial (rather than the algebraic formal definition many other books and research articles use) and provides self-contained proofs of the Tait conjecture (one of the big achievements from the Jones invariant). It also presents explicit computations to the Casson–Lin invariant via braid representations. With the approach of an explicit computational point of view on knot invariants, this user-friendly volume will benefit readers to easily understand low-dimensional topology from examples and computations, rather than only knowing terminologies and theorems."-- Knot theory Braid theory Low-dimensional topology Alexander ideals Knot polynomials http://www.worldscientific.com/worldscibooks/10.1142/9595#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Li, Weiping 1963- Lecture notes on knot invariants Knot theory Braid theory Low-dimensional topology Alexander ideals Knot polynomials |
title | Lecture notes on knot invariants |
title_alt | Knot invariants |
title_auth | Lecture notes on knot invariants |
title_exact_search | Lecture notes on knot invariants |
title_full | Lecture notes on knot invariants by Weiping Li (Southwest Jiaotong University, China & Oklahoma State University, USA) |
title_fullStr | Lecture notes on knot invariants by Weiping Li (Southwest Jiaotong University, China & Oklahoma State University, USA) |
title_full_unstemmed | Lecture notes on knot invariants by Weiping Li (Southwest Jiaotong University, China & Oklahoma State University, USA) |
title_short | Lecture notes on knot invariants |
title_sort | lecture notes on knot invariants |
topic | Knot theory Braid theory Low-dimensional topology Alexander ideals Knot polynomials |
topic_facet | Knot theory Braid theory Low-dimensional topology Alexander ideals Knot polynomials |
url | http://www.worldscientific.com/worldscibooks/10.1142/9595#t=toc |
work_keys_str_mv | AT liweiping lecturenotesonknotinvariants AT liweiping knotinvariants |