The (1+1)-nonlinear universe of the parabolic map and combinatorics:
This monograph develops chaos theory from properties of the graphs inverse to the parabolic map of the interval [0, 2], where the height at the midpoint x = 1 may be viewed as a time-like parameter, which together with the x-coordinate, provide the two parameters that uniquely characterize the parab...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2015
|
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This monograph develops chaos theory from properties of the graphs inverse to the parabolic map of the interval [0, 2], where the height at the midpoint x = 1 may be viewed as a time-like parameter, which together with the x-coordinate, provide the two parameters that uniquely characterize the parabola, and which are used throughout the monograph. There is only one basic mathematical operation used: function composition. The functions studied are the n-fold composition of the basic parabola with itself. However, it is the properties of the graph inverse to this n-fold composition that are the objects whose properties are developed. The reflection symmetry of the basic parabola through the vertical line x = 1 gives rise to two symmetry classes of inverse graphs: the inverse graphs and their conjugates. Quite remarkably, it turns out that there exists, among all the inverse graphs and their conjugates, a completely deterministic class of inverse graphs and their conjugates. Deterministic in the sense that this class is uniquely determined for all values of the time-like parameter and the x-coordinate, the entire theory, of course, being highly nonlinear - it is polynomial in the time-like parameter and in the x-coordinate. The deterministic property and its implementation are key to the argument that the system is a complex adaptive system in the sense that a few axioms lead to structures of unexpected richness. This monograph is about working out the many details that advance the notion that deterministic chaos theory, as realized by a complex adaptive system, is indeed a new body of mathematics that enriches our understanding of the world around us. But now the imagination is also opened to the possibility that the real universe is a complex adaptive system |
Beschreibung: | xii, 179 p. ill |
ISBN: | 9789814632423 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044640525 | ||
003 | DE-604 | ||
005 | 20210607 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2015 |||| o||u| ||||||eng d | ||
020 | |a 9789814632423 |9 978-981-4632-42-3 | ||
024 | 7 | |a 10.1142/9370 |2 doi | |
035 | |a (ZDB-124-WOP)00006336 | ||
035 | |a (OCoLC)988734230 | ||
035 | |a (DE-599)BVBBV044640525 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 511/.6 |2 22 | |
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a Louck, James D. |d 1928- |e Verfasser |0 (DE-588)141071044 |4 aut | |
245 | 1 | 0 | |a The (1+1)-nonlinear universe of the parabolic map and combinatorics |c James D. Louck, Myron L. Stein |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2015 | |
300 | |a xii, 179 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This monograph develops chaos theory from properties of the graphs inverse to the parabolic map of the interval [0, 2], where the height at the midpoint x = 1 may be viewed as a time-like parameter, which together with the x-coordinate, provide the two parameters that uniquely characterize the parabola, and which are used throughout the monograph. There is only one basic mathematical operation used: function composition. The functions studied are the n-fold composition of the basic parabola with itself. However, it is the properties of the graph inverse to this n-fold composition that are the objects whose properties are developed. The reflection symmetry of the basic parabola through the vertical line x = 1 gives rise to two symmetry classes of inverse graphs: the inverse graphs and their conjugates. Quite remarkably, it turns out that there exists, among all the inverse graphs and their conjugates, a completely deterministic class of inverse graphs and their conjugates. Deterministic in the sense that this class is uniquely determined for all values of the time-like parameter and the x-coordinate, the entire theory, of course, being highly nonlinear - it is polynomial in the time-like parameter and in the x-coordinate. The deterministic property and its implementation are key to the argument that the system is a complex adaptive system in the sense that a few axioms lead to structures of unexpected richness. This monograph is about working out the many details that advance the notion that deterministic chaos theory, as realized by a complex adaptive system, is indeed a new body of mathematics that enriches our understanding of the world around us. But now the imagination is also opened to the possibility that the real universe is a complex adaptive system | ||
650 | 4 | |a Nonlinear theories | |
650 | 4 | |a Chaotic behavior in systems | |
650 | 4 | |a Combinatorial analysis | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Chaotisches System |0 (DE-588)4316104-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Parabolisches System |0 (DE-588)4352365-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorische Analysis |0 (DE-588)4164746-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kombinatorische Analysis |0 (DE-588)4164746-4 |D s |
689 | 0 | 1 | |a Chaotisches System |0 (DE-588)4316104-2 |D s |
689 | 0 | 2 | |a Parabolisches System |0 (DE-588)4352365-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Stein, M. L. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814632416 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/9370#t=toc |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030038498 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/9370#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178060342198272 |
---|---|
any_adam_object | |
author | Louck, James D. 1928- |
author_GND | (DE-588)141071044 |
author_facet | Louck, James D. 1928- |
author_role | aut |
author_sort | Louck, James D. 1928- |
author_variant | j d l jd jdl |
building | Verbundindex |
bvnumber | BV044640525 |
classification_rvk | SK 890 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00006336 (OCoLC)988734230 (DE-599)BVBBV044640525 |
dewey-full | 511/.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.6 |
dewey-search | 511/.6 |
dewey-sort | 3511 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03815nmm a2200517zc 4500</leader><controlfield tag="001">BV044640525</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210607 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814632423</subfield><subfield code="9">978-981-4632-42-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/9370</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00006336</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)988734230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044640525</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Louck, James D.</subfield><subfield code="d">1928-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141071044</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The (1+1)-nonlinear universe of the parabolic map and combinatorics</subfield><subfield code="c">James D. Louck, Myron L. Stein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 179 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph develops chaos theory from properties of the graphs inverse to the parabolic map of the interval [0, 2], where the height at the midpoint x = 1 may be viewed as a time-like parameter, which together with the x-coordinate, provide the two parameters that uniquely characterize the parabola, and which are used throughout the monograph. There is only one basic mathematical operation used: function composition. The functions studied are the n-fold composition of the basic parabola with itself. However, it is the properties of the graph inverse to this n-fold composition that are the objects whose properties are developed. The reflection symmetry of the basic parabola through the vertical line x = 1 gives rise to two symmetry classes of inverse graphs: the inverse graphs and their conjugates. Quite remarkably, it turns out that there exists, among all the inverse graphs and their conjugates, a completely deterministic class of inverse graphs and their conjugates. Deterministic in the sense that this class is uniquely determined for all values of the time-like parameter and the x-coordinate, the entire theory, of course, being highly nonlinear - it is polynomial in the time-like parameter and in the x-coordinate. The deterministic property and its implementation are key to the argument that the system is a complex adaptive system in the sense that a few axioms lead to structures of unexpected richness. This monograph is about working out the many details that advance the notion that deterministic chaos theory, as realized by a complex adaptive system, is indeed a new body of mathematics that enriches our understanding of the world around us. But now the imagination is also opened to the possibility that the real universe is a complex adaptive system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic behavior in systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parabolisches System</subfield><subfield code="0">(DE-588)4352365-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Analysis</subfield><subfield code="0">(DE-588)4164746-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorische Analysis</subfield><subfield code="0">(DE-588)4164746-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Parabolisches System</subfield><subfield code="0">(DE-588)4352365-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stein, M. L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814632416</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/9370#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030038498</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/9370#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044640525 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:58Z |
institution | BVB |
isbn | 9789814632423 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030038498 |
oclc_num | 988734230 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xii, 179 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Louck, James D. 1928- Verfasser (DE-588)141071044 aut The (1+1)-nonlinear universe of the parabolic map and combinatorics James D. Louck, Myron L. Stein Singapore World Scientific Pub. Co. c2015 xii, 179 p. ill txt rdacontent c rdamedia cr rdacarrier This monograph develops chaos theory from properties of the graphs inverse to the parabolic map of the interval [0, 2], where the height at the midpoint x = 1 may be viewed as a time-like parameter, which together with the x-coordinate, provide the two parameters that uniquely characterize the parabola, and which are used throughout the monograph. There is only one basic mathematical operation used: function composition. The functions studied are the n-fold composition of the basic parabola with itself. However, it is the properties of the graph inverse to this n-fold composition that are the objects whose properties are developed. The reflection symmetry of the basic parabola through the vertical line x = 1 gives rise to two symmetry classes of inverse graphs: the inverse graphs and their conjugates. Quite remarkably, it turns out that there exists, among all the inverse graphs and their conjugates, a completely deterministic class of inverse graphs and their conjugates. Deterministic in the sense that this class is uniquely determined for all values of the time-like parameter and the x-coordinate, the entire theory, of course, being highly nonlinear - it is polynomial in the time-like parameter and in the x-coordinate. The deterministic property and its implementation are key to the argument that the system is a complex adaptive system in the sense that a few axioms lead to structures of unexpected richness. This monograph is about working out the many details that advance the notion that deterministic chaos theory, as realized by a complex adaptive system, is indeed a new body of mathematics that enriches our understanding of the world around us. But now the imagination is also opened to the possibility that the real universe is a complex adaptive system Nonlinear theories Chaotic behavior in systems Combinatorial analysis Mathematical analysis Chaotisches System (DE-588)4316104-2 gnd rswk-swf Parabolisches System (DE-588)4352365-1 gnd rswk-swf Kombinatorische Analysis (DE-588)4164746-4 gnd rswk-swf Kombinatorische Analysis (DE-588)4164746-4 s Chaotisches System (DE-588)4316104-2 s Parabolisches System (DE-588)4352365-1 s 1\p DE-604 Stein, M. L. Sonstige oth Erscheint auch als Druck-Ausgabe 9789814632416 http://www.worldscientific.com/worldscibooks/10.1142/9370#t=toc Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Louck, James D. 1928- The (1+1)-nonlinear universe of the parabolic map and combinatorics Nonlinear theories Chaotic behavior in systems Combinatorial analysis Mathematical analysis Chaotisches System (DE-588)4316104-2 gnd Parabolisches System (DE-588)4352365-1 gnd Kombinatorische Analysis (DE-588)4164746-4 gnd |
subject_GND | (DE-588)4316104-2 (DE-588)4352365-1 (DE-588)4164746-4 |
title | The (1+1)-nonlinear universe of the parabolic map and combinatorics |
title_auth | The (1+1)-nonlinear universe of the parabolic map and combinatorics |
title_exact_search | The (1+1)-nonlinear universe of the parabolic map and combinatorics |
title_full | The (1+1)-nonlinear universe of the parabolic map and combinatorics James D. Louck, Myron L. Stein |
title_fullStr | The (1+1)-nonlinear universe of the parabolic map and combinatorics James D. Louck, Myron L. Stein |
title_full_unstemmed | The (1+1)-nonlinear universe of the parabolic map and combinatorics James D. Louck, Myron L. Stein |
title_short | The (1+1)-nonlinear universe of the parabolic map and combinatorics |
title_sort | the 1 1 nonlinear universe of the parabolic map and combinatorics |
topic | Nonlinear theories Chaotic behavior in systems Combinatorial analysis Mathematical analysis Chaotisches System (DE-588)4316104-2 gnd Parabolisches System (DE-588)4352365-1 gnd Kombinatorische Analysis (DE-588)4164746-4 gnd |
topic_facet | Nonlinear theories Chaotic behavior in systems Combinatorial analysis Mathematical analysis Chaotisches System Parabolisches System Kombinatorische Analysis |
url | http://www.worldscientific.com/worldscibooks/10.1142/9370#t=toc |
work_keys_str_mv | AT louckjamesd the11nonlinearuniverseoftheparabolicmapandcombinatorics AT steinml the11nonlinearuniverseoftheparabolicmapandcombinatorics |