Differential operators on spaces of variable integrability:
The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of thei...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2014
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of their intrinsic mathematical importance as natural, interesting examples of non-rearrangement-invariant function spaces but also in view of their applications, which include the mathematical modeling of electrorheological fluids and image restoration. The main focus of this book is to provide a solid functional-analytic background for the study of differential operators on spaces with variable integrability. It includes some novel stability phenomena which the authors have recently discovered. At the present time, this is the only book which focuses systematically on differential operators on spaces with variable integrability. The authors present a concise, natural introduction to the basic material and steadily move toward differential operators on these spaces, leading the reader quickly to current research topics |
Beschreibung: | xiv, 208 p |
ISBN: | 9789814596329 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044640356 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2014 |||| o||u| ||||||eng d | ||
020 | |a 9789814596329 |9 978-981-4596-32-9 | ||
024 | 7 | |a 10.1142/9124 |2 doi | |
035 | |a (ZDB-124-WOP)00006089 | ||
035 | |a (OCoLC)1012666193 | ||
035 | |a (DE-599)BVBBV044640356 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515/.73 |2 22 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Edmunds, D. E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Differential operators on spaces of variable integrability |c David E. Edmunds, Jan Lang, Osvaldo Mendez |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2014 | |
300 | |a xiv, 208 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of their intrinsic mathematical importance as natural, interesting examples of non-rearrangement-invariant function spaces but also in view of their applications, which include the mathematical modeling of electrorheological fluids and image restoration. The main focus of this book is to provide a solid functional-analytic background for the study of differential operators on spaces with variable integrability. It includes some novel stability phenomena which the authors have recently discovered. At the present time, this is the only book which focuses systematically on differential operators on spaces with variable integrability. The authors present a concise, natural introduction to the basic material and steadily move toward differential operators on these spaces, leading the reader quickly to current research topics | ||
650 | 4 | |a Function spaces | |
650 | 4 | |a Sobolev spaces | |
650 | 4 | |a Differential operators | |
700 | 1 | |a Lang, Jan |e Sonstige |4 oth | |
700 | 1 | |a Mendez, Osvaldo |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814596312 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/9124#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030038329 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/9124#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178060018188288 |
---|---|
any_adam_object | |
author | Edmunds, D. E. |
author_facet | Edmunds, D. E. |
author_role | aut |
author_sort | Edmunds, D. E. |
author_variant | d e e de dee |
building | Verbundindex |
bvnumber | BV044640356 |
classification_rvk | SK 620 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00006089 (OCoLC)1012666193 (DE-599)BVBBV044640356 |
dewey-full | 515/.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.73 |
dewey-search | 515/.73 |
dewey-sort | 3515 273 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02602nmm a2200421zc 4500</leader><controlfield tag="001">BV044640356</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814596329</subfield><subfield code="9">978-981-4596-32-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/9124</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00006089</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012666193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044640356</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.73</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Edmunds, D. E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential operators on spaces of variable integrability</subfield><subfield code="c">David E. Edmunds, Jan Lang, Osvaldo Mendez</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 208 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of their intrinsic mathematical importance as natural, interesting examples of non-rearrangement-invariant function spaces but also in view of their applications, which include the mathematical modeling of electrorheological fluids and image restoration. The main focus of this book is to provide a solid functional-analytic background for the study of differential operators on spaces with variable integrability. It includes some novel stability phenomena which the authors have recently discovered. At the present time, this is the only book which focuses systematically on differential operators on spaces with variable integrability. The authors present a concise, natural introduction to the basic material and steadily move toward differential operators on these spaces, leading the reader quickly to current research topics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Function spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sobolev spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential operators</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lang, Jan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mendez, Osvaldo</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814596312</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/9124#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030038329</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/9124#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044640356 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:58Z |
institution | BVB |
isbn | 9789814596329 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030038329 |
oclc_num | 1012666193 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiv, 208 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Edmunds, D. E. Verfasser aut Differential operators on spaces of variable integrability David E. Edmunds, Jan Lang, Osvaldo Mendez Singapore World Scientific Pub. Co. c2014 xiv, 208 p txt rdacontent c rdamedia cr rdacarrier The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of their intrinsic mathematical importance as natural, interesting examples of non-rearrangement-invariant function spaces but also in view of their applications, which include the mathematical modeling of electrorheological fluids and image restoration. The main focus of this book is to provide a solid functional-analytic background for the study of differential operators on spaces with variable integrability. It includes some novel stability phenomena which the authors have recently discovered. At the present time, this is the only book which focuses systematically on differential operators on spaces with variable integrability. The authors present a concise, natural introduction to the basic material and steadily move toward differential operators on these spaces, leading the reader quickly to current research topics Function spaces Sobolev spaces Differential operators Lang, Jan Sonstige oth Mendez, Osvaldo Sonstige oth Erscheint auch als Druck-Ausgabe 9789814596312 http://www.worldscientific.com/worldscibooks/10.1142/9124#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Edmunds, D. E. Differential operators on spaces of variable integrability Function spaces Sobolev spaces Differential operators |
title | Differential operators on spaces of variable integrability |
title_auth | Differential operators on spaces of variable integrability |
title_exact_search | Differential operators on spaces of variable integrability |
title_full | Differential operators on spaces of variable integrability David E. Edmunds, Jan Lang, Osvaldo Mendez |
title_fullStr | Differential operators on spaces of variable integrability David E. Edmunds, Jan Lang, Osvaldo Mendez |
title_full_unstemmed | Differential operators on spaces of variable integrability David E. Edmunds, Jan Lang, Osvaldo Mendez |
title_short | Differential operators on spaces of variable integrability |
title_sort | differential operators on spaces of variable integrability |
topic | Function spaces Sobolev spaces Differential operators |
topic_facet | Function spaces Sobolev spaces Differential operators |
url | http://www.worldscientific.com/worldscibooks/10.1142/9124#t=toc |
work_keys_str_mv | AT edmundsde differentialoperatorsonspacesofvariableintegrability AT langjan differentialoperatorsonspacesofvariableintegrability AT mendezosvaldo differentialoperatorsonspacesofvariableintegrability |