Spanning tree results for graphs and multigraphs: a matrix-theoretic approach
This book is concerned with the optimization problem of maximizing the number of spanning trees of a multigraph. Since a spanning tree is a minimally connected subgraph, graphs and multigraphs having more of these are, in some sense, immune to disconnection by edge failure. We employ a matrix-theore...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2015
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book is concerned with the optimization problem of maximizing the number of spanning trees of a multigraph. Since a spanning tree is a minimally connected subgraph, graphs and multigraphs having more of these are, in some sense, immune to disconnection by edge failure. We employ a matrix-theoretic approach to the calculation of the number of spanning trees. The authors envision this as a research aid that is of particular interest to graduate students or advanced undergraduate students and researchers in the area of network reliability theory. This would encompass graph theorists of all stripes, including mathematicians, computer scientists, electrical and computer engineers, and operations researchers |
Beschreibung: | x, 175 p. ill |
ISBN: | 9789814566049 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044640252 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2015 |||| o||u| ||||||eng d | ||
020 | |a 9789814566049 |9 978-981-4566-04-9 | ||
024 | 7 | |a 10.1142/8963 |2 doi | |
035 | |a (ZDB-124-WOP)00006153 | ||
035 | |a (OCoLC)1012661742 | ||
035 | |a (DE-599)BVBBV044640252 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 511.52 |2 22 | |
100 | 1 | |a Gross, Daniel J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spanning tree results for graphs and multigraphs |b a matrix-theoretic approach |c Daniel J. Gross, John T. Saccoman, Charles L. Suffel |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2015 | |
300 | |a x, 175 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This book is concerned with the optimization problem of maximizing the number of spanning trees of a multigraph. Since a spanning tree is a minimally connected subgraph, graphs and multigraphs having more of these are, in some sense, immune to disconnection by edge failure. We employ a matrix-theoretic approach to the calculation of the number of spanning trees. The authors envision this as a research aid that is of particular interest to graduate students or advanced undergraduate students and researchers in the area of network reliability theory. This would encompass graph theorists of all stripes, including mathematicians, computer scientists, electrical and computer engineers, and operations researchers | ||
650 | 4 | |a Spanning trees (Graph theory) | |
650 | 4 | |a Multigraph | |
700 | 1 | |a Saccoman, John T. |d 1964- |e Sonstige |4 oth | |
700 | 1 | |a Suffel, Charles L. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814566032 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/8963#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030038225 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/8963#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178059796938752 |
---|---|
any_adam_object | |
author | Gross, Daniel J. |
author_facet | Gross, Daniel J. |
author_role | aut |
author_sort | Gross, Daniel J. |
author_variant | d j g dj djg |
building | Verbundindex |
bvnumber | BV044640252 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00006153 (OCoLC)1012661742 (DE-599)BVBBV044640252 |
dewey-full | 511.52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.52 |
dewey-search | 511.52 |
dewey-sort | 3511.52 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02172nmm a2200397zc 4500</leader><controlfield tag="001">BV044640252</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814566049</subfield><subfield code="9">978-981-4566-04-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/8963</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00006153</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012661742</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044640252</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.52</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gross, Daniel J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spanning tree results for graphs and multigraphs</subfield><subfield code="b">a matrix-theoretic approach</subfield><subfield code="c">Daniel J. Gross, John T. Saccoman, Charles L. Suffel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 175 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is concerned with the optimization problem of maximizing the number of spanning trees of a multigraph. Since a spanning tree is a minimally connected subgraph, graphs and multigraphs having more of these are, in some sense, immune to disconnection by edge failure. We employ a matrix-theoretic approach to the calculation of the number of spanning trees. The authors envision this as a research aid that is of particular interest to graduate students or advanced undergraduate students and researchers in the area of network reliability theory. This would encompass graph theorists of all stripes, including mathematicians, computer scientists, electrical and computer engineers, and operations researchers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spanning trees (Graph theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multigraph</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saccoman, John T.</subfield><subfield code="d">1964-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suffel, Charles L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814566032</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8963#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030038225</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8963#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044640252 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:57Z |
institution | BVB |
isbn | 9789814566049 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030038225 |
oclc_num | 1012661742 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | x, 175 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Gross, Daniel J. Verfasser aut Spanning tree results for graphs and multigraphs a matrix-theoretic approach Daniel J. Gross, John T. Saccoman, Charles L. Suffel Singapore World Scientific Pub. Co. c2015 x, 175 p. ill txt rdacontent c rdamedia cr rdacarrier This book is concerned with the optimization problem of maximizing the number of spanning trees of a multigraph. Since a spanning tree is a minimally connected subgraph, graphs and multigraphs having more of these are, in some sense, immune to disconnection by edge failure. We employ a matrix-theoretic approach to the calculation of the number of spanning trees. The authors envision this as a research aid that is of particular interest to graduate students or advanced undergraduate students and researchers in the area of network reliability theory. This would encompass graph theorists of all stripes, including mathematicians, computer scientists, electrical and computer engineers, and operations researchers Spanning trees (Graph theory) Multigraph Saccoman, John T. 1964- Sonstige oth Suffel, Charles L. Sonstige oth Erscheint auch als Druck-Ausgabe 9789814566032 http://www.worldscientific.com/worldscibooks/10.1142/8963#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Gross, Daniel J. Spanning tree results for graphs and multigraphs a matrix-theoretic approach Spanning trees (Graph theory) Multigraph |
title | Spanning tree results for graphs and multigraphs a matrix-theoretic approach |
title_auth | Spanning tree results for graphs and multigraphs a matrix-theoretic approach |
title_exact_search | Spanning tree results for graphs and multigraphs a matrix-theoretic approach |
title_full | Spanning tree results for graphs and multigraphs a matrix-theoretic approach Daniel J. Gross, John T. Saccoman, Charles L. Suffel |
title_fullStr | Spanning tree results for graphs and multigraphs a matrix-theoretic approach Daniel J. Gross, John T. Saccoman, Charles L. Suffel |
title_full_unstemmed | Spanning tree results for graphs and multigraphs a matrix-theoretic approach Daniel J. Gross, John T. Saccoman, Charles L. Suffel |
title_short | Spanning tree results for graphs and multigraphs |
title_sort | spanning tree results for graphs and multigraphs a matrix theoretic approach |
title_sub | a matrix-theoretic approach |
topic | Spanning trees (Graph theory) Multigraph |
topic_facet | Spanning trees (Graph theory) Multigraph |
url | http://www.worldscientific.com/worldscibooks/10.1142/8963#t=toc |
work_keys_str_mv | AT grossdanielj spanningtreeresultsforgraphsandmultigraphsamatrixtheoreticapproach AT saccomanjohnt spanningtreeresultsforgraphsandmultigraphsamatrixtheoreticapproach AT suffelcharlesl spanningtreeresultsforgraphsandmultigraphsamatrixtheoreticapproach |