Gibbs measures on Cayley trees:
The purpose of this book is to present systematically all known mathematical results on Gibbs measures on Cayley trees (Bethe lattices). The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2013
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | The purpose of this book is to present systematically all known mathematical results on Gibbs measures on Cayley trees (Bethe lattices). The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure associated with the Hamiltonian of a physical system (a model) and generalizes the notion of a canonical ensemble. More importantly, when the Hamiltonian can be written as a sum of parts, the Gibbs measure has the Markov property (a certain kind of statistical independence), thus leading to its widespread appearance in many problems outside of physics such as biology, Hopfield networks, Markov networks, and Markov logic networks. Moreover, the Gibbs measure is the unique measure that maximizes the entropy for a given expected energy. The method used for the description of Gibbs measures on Cayley trees is the method of Markov random field theory and recurrent equations of this theory, but the modern theory of Gibbs measures on trees uses new tools such as group theory, information flows on trees, node-weighted random walks, contour methods on trees, and nonlinear analysis. This book discusses all the mentioned methods, which were developed recently |
Beschreibung: | xviii, 385 p. ill |
ISBN: | 9789814513388 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044639459 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2013 |||| o||u| ||||||eng d | ||
020 | |a 9789814513388 |c electronic bk. |9 978-981-4513-38-8 | ||
024 | 7 | |a 10.1142/8841 |2 doi | |
035 | |a (ZDB-124-WOP)00003317 | ||
035 | |a (OCoLC)1012693817 | ||
035 | |a (DE-599)BVBBV044639459 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 519.2 |2 22 | |
100 | 1 | |a Rozikov, Utkir A. |d 1970- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Gibbs measures on Cayley trees |c Utkir A Rozikov |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2013 | |
300 | |a xviii, 385 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The purpose of this book is to present systematically all known mathematical results on Gibbs measures on Cayley trees (Bethe lattices). The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure associated with the Hamiltonian of a physical system (a model) and generalizes the notion of a canonical ensemble. More importantly, when the Hamiltonian can be written as a sum of parts, the Gibbs measure has the Markov property (a certain kind of statistical independence), thus leading to its widespread appearance in many problems outside of physics such as biology, Hopfield networks, Markov networks, and Markov logic networks. Moreover, the Gibbs measure is the unique measure that maximizes the entropy for a given expected energy. The method used for the description of Gibbs measures on Cayley trees is the method of Markov random field theory and recurrent equations of this theory, but the modern theory of Gibbs measures on trees uses new tools such as group theory, information flows on trees, node-weighted random walks, contour methods on trees, and nonlinear analysis. This book discusses all the mentioned methods, which were developed recently | ||
650 | 4 | |a Probability measures | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 0 | 7 | |a Cayley-Baum |0 (DE-588)4466547-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gibbs-Maß |0 (DE-588)4157328-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Cayley-Baum |0 (DE-588)4466547-7 |D s |
689 | 0 | 1 | |a Gibbs-Maß |0 (DE-588)4157328-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814513371 (hardcover : alk. paper) |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/8841#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030037432 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/8841#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178057505800192 |
---|---|
any_adam_object | |
author | Rozikov, Utkir A. 1970- |
author_facet | Rozikov, Utkir A. 1970- |
author_role | aut |
author_sort | Rozikov, Utkir A. 1970- |
author_variant | u a r ua uar |
building | Verbundindex |
bvnumber | BV044639459 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00003317 (OCoLC)1012693817 (DE-599)BVBBV044639459 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02930nmm a2200445zc 4500</leader><controlfield tag="001">BV044639459</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814513388</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4513-38-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/8841</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003317</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012693817</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044639459</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rozikov, Utkir A.</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gibbs measures on Cayley trees</subfield><subfield code="c">Utkir A Rozikov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 385 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of this book is to present systematically all known mathematical results on Gibbs measures on Cayley trees (Bethe lattices). The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure associated with the Hamiltonian of a physical system (a model) and generalizes the notion of a canonical ensemble. More importantly, when the Hamiltonian can be written as a sum of parts, the Gibbs measure has the Markov property (a certain kind of statistical independence), thus leading to its widespread appearance in many problems outside of physics such as biology, Hopfield networks, Markov networks, and Markov logic networks. Moreover, the Gibbs measure is the unique measure that maximizes the entropy for a given expected energy. The method used for the description of Gibbs measures on Cayley trees is the method of Markov random field theory and recurrent equations of this theory, but the modern theory of Gibbs measures on trees uses new tools such as group theory, information flows on trees, node-weighted random walks, contour methods on trees, and nonlinear analysis. This book discusses all the mentioned methods, which were developed recently</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability measures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cayley-Baum</subfield><subfield code="0">(DE-588)4466547-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gibbs-Maß</subfield><subfield code="0">(DE-588)4157328-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Cayley-Baum</subfield><subfield code="0">(DE-588)4466547-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gibbs-Maß</subfield><subfield code="0">(DE-588)4157328-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814513371 (hardcover : alk. paper)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8841#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030037432</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8841#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044639459 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:55Z |
institution | BVB |
isbn | 9789814513388 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030037432 |
oclc_num | 1012693817 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xviii, 385 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Rozikov, Utkir A. 1970- Verfasser aut Gibbs measures on Cayley trees Utkir A Rozikov Singapore World Scientific Pub. Co. c2013 xviii, 385 p. ill txt rdacontent c rdamedia cr rdacarrier The purpose of this book is to present systematically all known mathematical results on Gibbs measures on Cayley trees (Bethe lattices). The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure associated with the Hamiltonian of a physical system (a model) and generalizes the notion of a canonical ensemble. More importantly, when the Hamiltonian can be written as a sum of parts, the Gibbs measure has the Markov property (a certain kind of statistical independence), thus leading to its widespread appearance in many problems outside of physics such as biology, Hopfield networks, Markov networks, and Markov logic networks. Moreover, the Gibbs measure is the unique measure that maximizes the entropy for a given expected energy. The method used for the description of Gibbs measures on Cayley trees is the method of Markov random field theory and recurrent equations of this theory, but the modern theory of Gibbs measures on trees uses new tools such as group theory, information flows on trees, node-weighted random walks, contour methods on trees, and nonlinear analysis. This book discusses all the mentioned methods, which were developed recently Probability measures Distribution (Probability theory) Cayley-Baum (DE-588)4466547-7 gnd rswk-swf Gibbs-Maß (DE-588)4157328-6 gnd rswk-swf Cayley-Baum (DE-588)4466547-7 s Gibbs-Maß (DE-588)4157328-6 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789814513371 (hardcover : alk. paper) http://www.worldscientific.com/worldscibooks/10.1142/8841#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rozikov, Utkir A. 1970- Gibbs measures on Cayley trees Probability measures Distribution (Probability theory) Cayley-Baum (DE-588)4466547-7 gnd Gibbs-Maß (DE-588)4157328-6 gnd |
subject_GND | (DE-588)4466547-7 (DE-588)4157328-6 |
title | Gibbs measures on Cayley trees |
title_auth | Gibbs measures on Cayley trees |
title_exact_search | Gibbs measures on Cayley trees |
title_full | Gibbs measures on Cayley trees Utkir A Rozikov |
title_fullStr | Gibbs measures on Cayley trees Utkir A Rozikov |
title_full_unstemmed | Gibbs measures on Cayley trees Utkir A Rozikov |
title_short | Gibbs measures on Cayley trees |
title_sort | gibbs measures on cayley trees |
topic | Probability measures Distribution (Probability theory) Cayley-Baum (DE-588)4466547-7 gnd Gibbs-Maß (DE-588)4157328-6 gnd |
topic_facet | Probability measures Distribution (Probability theory) Cayley-Baum Gibbs-Maß |
url | http://www.worldscientific.com/worldscibooks/10.1142/8841#t=toc |
work_keys_str_mv | AT rozikovutkira gibbsmeasuresoncayleytrees |