Physical models of neural networks:
This lecture note volume is mainly about the recent development that connected neural network modeling to the theoretical physics of disordered systems. It gives a detailed account of the (Little-) Hopfield model and its ramifications concerning non-orthogonal and hierarchical patterns, short-term m...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1990
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This lecture note volume is mainly about the recent development that connected neural network modeling to the theoretical physics of disordered systems. It gives a detailed account of the (Little-) Hopfield model and its ramifications concerning non-orthogonal and hierarchical patterns, short-term memory, time sequences, and dynamical learning algorithms. It also offers a brief introduction to computation in layered feed-forward networks, trained by back-propagation and other methods. Kohonen's self-organizing feature map algorithm is discussed in detail as a physical ordering process. The book offers a minimum complexity guide through the often cumbersome theories developed around the Hopfield model. The physical model for the Kohonen self-organizing feature map algorithm is new, enabling the reader to better understand how and why this fascinating and somewhat mysterious tool works |
Beschreibung: | viii, 143 p. ill |
ISBN: | 9789814434492 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044639139 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1990 |||| o||u| ||||||eng d | ||
020 | |a 9789814434492 |9 978-981-4434-49-2 | ||
024 | 7 | |a 10.1142/0925 |2 doi | |
035 | |a (ZDB-124-WOP)00005873 | ||
035 | |a (OCoLC)1005226799 | ||
035 | |a (DE-599)BVBBV044639139 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 612.82011 |2 22 | |
084 | |a ST 130 |0 (DE-625)143588: |2 rvk | ||
084 | |a ST 150 |0 (DE-625)143594: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Geszti, Tamás |e Verfasser |4 aut | |
245 | 1 | 0 | |a Physical models of neural networks |c Tamás Geszti |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1990 | |
300 | |a viii, 143 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This lecture note volume is mainly about the recent development that connected neural network modeling to the theoretical physics of disordered systems. It gives a detailed account of the (Little-) Hopfield model and its ramifications concerning non-orthogonal and hierarchical patterns, short-term memory, time sequences, and dynamical learning algorithms. It also offers a brief introduction to computation in layered feed-forward networks, trained by back-propagation and other methods. Kohonen's self-organizing feature map algorithm is discussed in detail as a physical ordering process. The book offers a minimum complexity guide through the often cumbersome theories developed around the Hopfield model. The physical model for the Kohonen self-organizing feature map algorithm is new, enabling the reader to better understand how and why this fascinating and somewhat mysterious tool works | ||
650 | 4 | |a Neural circuitry / Models | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Neural computers | |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modell |0 (DE-588)4039798-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nervennetz |0 (DE-588)4041638-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nervennetz |0 (DE-588)4041638-0 |D s |
689 | 0 | 1 | |a Modell |0 (DE-588)4039798-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810200121 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810200129 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/0925#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030037111 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/0925#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178056791719936 |
---|---|
any_adam_object | |
author | Geszti, Tamás |
author_facet | Geszti, Tamás |
author_role | aut |
author_sort | Geszti, Tamás |
author_variant | t g tg |
building | Verbundindex |
bvnumber | BV044639139 |
classification_rvk | ST 130 ST 150 ST 300 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00005873 (OCoLC)1005226799 (DE-599)BVBBV044639139 |
dewey-full | 612.82011 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 612 - Human physiology |
dewey-raw | 612.82011 |
dewey-search | 612.82011 |
dewey-sort | 3612.82011 |
dewey-tens | 610 - Medicine and health |
discipline | Informatik Medizin |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02978nmm a2200553zc 4500</leader><controlfield tag="001">BV044639139</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814434492</subfield><subfield code="9">978-981-4434-49-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/0925</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00005873</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005226799</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044639139</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612.82011</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 130</subfield><subfield code="0">(DE-625)143588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 150</subfield><subfield code="0">(DE-625)143594:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Geszti, Tamás</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physical models of neural networks</subfield><subfield code="c">Tamás Geszti</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 143 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This lecture note volume is mainly about the recent development that connected neural network modeling to the theoretical physics of disordered systems. It gives a detailed account of the (Little-) Hopfield model and its ramifications concerning non-orthogonal and hierarchical patterns, short-term memory, time sequences, and dynamical learning algorithms. It also offers a brief introduction to computation in layered feed-forward networks, trained by back-propagation and other methods. Kohonen's self-organizing feature map algorithm is discussed in detail as a physical ordering process. The book offers a minimum complexity guide through the often cumbersome theories developed around the Hopfield model. The physical model for the Kohonen self-organizing feature map algorithm is new, enabling the reader to better understand how and why this fascinating and somewhat mysterious tool works</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural circuitry / Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural computers</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modell</subfield><subfield code="0">(DE-588)4039798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nervennetz</subfield><subfield code="0">(DE-588)4041638-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nervennetz</subfield><subfield code="0">(DE-588)4041638-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modell</subfield><subfield code="0">(DE-588)4039798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810200121</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810200129</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/0925#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030037111</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/0925#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044639139 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:54Z |
institution | BVB |
isbn | 9789814434492 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030037111 |
oclc_num | 1005226799 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | viii, 143 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Geszti, Tamás Verfasser aut Physical models of neural networks Tamás Geszti Singapore World Scientific Pub. Co. c1990 viii, 143 p. ill txt rdacontent c rdamedia cr rdacarrier This lecture note volume is mainly about the recent development that connected neural network modeling to the theoretical physics of disordered systems. It gives a detailed account of the (Little-) Hopfield model and its ramifications concerning non-orthogonal and hierarchical patterns, short-term memory, time sequences, and dynamical learning algorithms. It also offers a brief introduction to computation in layered feed-forward networks, trained by back-propagation and other methods. Kohonen's self-organizing feature map algorithm is discussed in detail as a physical ordering process. The book offers a minimum complexity guide through the often cumbersome theories developed around the Hopfield model. The physical model for the Kohonen self-organizing feature map algorithm is new, enabling the reader to better understand how and why this fascinating and somewhat mysterious tool works Neural circuitry / Models Neural networks (Computer science) Neural computers Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Modell (DE-588)4039798-1 gnd rswk-swf Nervennetz (DE-588)4041638-0 gnd rswk-swf Nervennetz (DE-588)4041638-0 s Modell (DE-588)4039798-1 s 1\p DE-604 Neuronales Netz (DE-588)4226127-2 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 9789810200121 Erscheint auch als Druck-Ausgabe 9810200129 http://www.worldscientific.com/worldscibooks/10.1142/0925#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Geszti, Tamás Physical models of neural networks Neural circuitry / Models Neural networks (Computer science) Neural computers Neuronales Netz (DE-588)4226127-2 gnd Modell (DE-588)4039798-1 gnd Nervennetz (DE-588)4041638-0 gnd |
subject_GND | (DE-588)4226127-2 (DE-588)4039798-1 (DE-588)4041638-0 |
title | Physical models of neural networks |
title_auth | Physical models of neural networks |
title_exact_search | Physical models of neural networks |
title_full | Physical models of neural networks Tamás Geszti |
title_fullStr | Physical models of neural networks Tamás Geszti |
title_full_unstemmed | Physical models of neural networks Tamás Geszti |
title_short | Physical models of neural networks |
title_sort | physical models of neural networks |
topic | Neural circuitry / Models Neural networks (Computer science) Neural computers Neuronales Netz (DE-588)4226127-2 gnd Modell (DE-588)4039798-1 gnd Nervennetz (DE-588)4041638-0 gnd |
topic_facet | Neural circuitry / Models Neural networks (Computer science) Neural computers Neuronales Netz Modell Nervennetz |
url | http://www.worldscientific.com/worldscibooks/10.1142/0925#t=toc |
work_keys_str_mv | AT gesztitamas physicalmodelsofneuralnetworks |