The geometry of spherical space form groups:
In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1989
|
Schriftenreihe: | Series in pure mathematics
v. 7 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pinc and Spinc equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theory groups. There is a deep relationship between topology and analysis with differential geometry serving as the bridge. This book is intended to serve as an introduction to this subject for people from different research backgrounds. This book is intended as a research monograph for people who are not experts in all the areas discussed. It is written for topologists wishing to understand some of the analytic details and for analysts wishing to understand some of the topological ideas. It is also intended as an introduction to the field for graduate students |
Beschreibung: | viii, 361 p |
ISBN: | 9789814434423 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044639132 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1989 |||| o||u| ||||||eng d | ||
020 | |a 9789814434423 |9 978-981-4434-42-3 | ||
024 | 7 | |a 10.1142/0868 |2 doi | |
035 | |a (ZDB-124-WOP)00005863 | ||
035 | |a (OCoLC)1012623749 | ||
035 | |a (DE-599)BVBBV044639132 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 516.3 |2 22 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Gilkey, Peter B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The geometry of spherical space form groups |c Peter B. Gilkey |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1989 | |
300 | |a viii, 361 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series in pure mathematics |v v. 7 | |
520 | |a In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pinc and Spinc equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theory groups. There is a deep relationship between topology and analysis with differential geometry serving as the bridge. This book is intended to serve as an introduction to this subject for people from different research backgrounds. This book is intended as a research monograph for people who are not experts in all the areas discussed. It is written for topologists wishing to understand some of the analytic details and for analysts wishing to understand some of the topological ideas. It is also intended as an introduction to the field for graduate students | ||
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Riemannian manifolds | |
650 | 4 | |a Homology theory | |
650 | 4 | |a K-theory | |
650 | 0 | 7 | |a Indextheorem |0 (DE-588)4140055-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Globale Analysis |0 (DE-588)4021285-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sphärischer Raum |0 (DE-588)4228077-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Clifford-Kleinsche Raumform |0 (DE-588)4228083-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sphärischer Raum |0 (DE-588)4228077-1 |D s |
689 | 0 | 1 | |a Clifford-Kleinsche Raumform |0 (DE-588)4228083-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Indextheorem |0 (DE-588)4140055-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Globale Analysis |0 (DE-588)4021285-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789971509279 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 997150927X |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/0868#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030037104 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/0868#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178056779137024 |
---|---|
any_adam_object | |
author | Gilkey, Peter B. |
author_facet | Gilkey, Peter B. |
author_role | aut |
author_sort | Gilkey, Peter B. |
author_variant | p b g pb pbg |
building | Verbundindex |
bvnumber | BV044639132 |
classification_rvk | SK 350 SK 370 SK 620 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00005863 (OCoLC)1012623749 (DE-599)BVBBV044639132 |
dewey-full | 516.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3 |
dewey-search | 516.3 |
dewey-sort | 3516.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03592nmm a2200625zcb4500</leader><controlfield tag="001">BV044639132</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814434423</subfield><subfield code="9">978-981-4434-42-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/0868</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00005863</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012623749</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044639132</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gilkey, Peter B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The geometry of spherical space form groups</subfield><subfield code="c">Peter B. Gilkey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 361 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in pure mathematics</subfield><subfield code="v">v. 7</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pinc and Spinc equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theory groups. There is a deep relationship between topology and analysis with differential geometry serving as the bridge. This book is intended to serve as an introduction to this subject for people from different research backgrounds. This book is intended as a research monograph for people who are not experts in all the areas discussed. It is written for topologists wishing to understand some of the analytic details and for analysts wishing to understand some of the topological ideas. It is also intended as an introduction to the field for graduate students</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannian manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Indextheorem</subfield><subfield code="0">(DE-588)4140055-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Analysis</subfield><subfield code="0">(DE-588)4021285-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sphärischer Raum</subfield><subfield code="0">(DE-588)4228077-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Clifford-Kleinsche Raumform</subfield><subfield code="0">(DE-588)4228083-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sphärischer Raum</subfield><subfield code="0">(DE-588)4228077-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Clifford-Kleinsche Raumform</subfield><subfield code="0">(DE-588)4228083-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Indextheorem</subfield><subfield code="0">(DE-588)4140055-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Globale Analysis</subfield><subfield code="0">(DE-588)4021285-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789971509279</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">997150927X</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/0868#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030037104</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/0868#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044639132 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:54Z |
institution | BVB |
isbn | 9789814434423 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030037104 |
oclc_num | 1012623749 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | viii, 361 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Series in pure mathematics |
spelling | Gilkey, Peter B. Verfasser aut The geometry of spherical space form groups Peter B. Gilkey Singapore World Scientific Pub. Co. c1989 viii, 361 p txt rdacontent c rdamedia cr rdacarrier Series in pure mathematics v. 7 In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pinc and Spinc equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theory groups. There is a deep relationship between topology and analysis with differential geometry serving as the bridge. This book is intended to serve as an introduction to this subject for people from different research backgrounds. This book is intended as a research monograph for people who are not experts in all the areas discussed. It is written for topologists wishing to understand some of the analytic details and for analysts wishing to understand some of the topological ideas. It is also intended as an introduction to the field for graduate students Manifolds (Mathematics) Riemannian manifolds Homology theory K-theory Indextheorem (DE-588)4140055-0 gnd rswk-swf Globale Analysis (DE-588)4021285-3 gnd rswk-swf Sphärischer Raum (DE-588)4228077-1 gnd rswk-swf Clifford-Kleinsche Raumform (DE-588)4228083-7 gnd rswk-swf Sphärischer Raum (DE-588)4228077-1 s Clifford-Kleinsche Raumform (DE-588)4228083-7 s 1\p DE-604 Indextheorem (DE-588)4140055-0 s 2\p DE-604 Globale Analysis (DE-588)4021285-3 s 3\p DE-604 Erscheint auch als Druck-Ausgabe 9789971509279 Erscheint auch als Druck-Ausgabe 997150927X http://www.worldscientific.com/worldscibooks/10.1142/0868#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gilkey, Peter B. The geometry of spherical space form groups Manifolds (Mathematics) Riemannian manifolds Homology theory K-theory Indextheorem (DE-588)4140055-0 gnd Globale Analysis (DE-588)4021285-3 gnd Sphärischer Raum (DE-588)4228077-1 gnd Clifford-Kleinsche Raumform (DE-588)4228083-7 gnd |
subject_GND | (DE-588)4140055-0 (DE-588)4021285-3 (DE-588)4228077-1 (DE-588)4228083-7 |
title | The geometry of spherical space form groups |
title_auth | The geometry of spherical space form groups |
title_exact_search | The geometry of spherical space form groups |
title_full | The geometry of spherical space form groups Peter B. Gilkey |
title_fullStr | The geometry of spherical space form groups Peter B. Gilkey |
title_full_unstemmed | The geometry of spherical space form groups Peter B. Gilkey |
title_short | The geometry of spherical space form groups |
title_sort | the geometry of spherical space form groups |
topic | Manifolds (Mathematics) Riemannian manifolds Homology theory K-theory Indextheorem (DE-588)4140055-0 gnd Globale Analysis (DE-588)4021285-3 gnd Sphärischer Raum (DE-588)4228077-1 gnd Clifford-Kleinsche Raumform (DE-588)4228083-7 gnd |
topic_facet | Manifolds (Mathematics) Riemannian manifolds Homology theory K-theory Indextheorem Globale Analysis Sphärischer Raum Clifford-Kleinsche Raumform |
url | http://www.worldscientific.com/worldscibooks/10.1142/0868#t=toc |
work_keys_str_mv | AT gilkeypeterb thegeometryofsphericalspaceformgroups |