Undergraduate convexity: from Fourier and Motzkin to Kuhn and Tucker
Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin eliminati...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2013
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point algorithm |
Beschreibung: | xiv, 283 p. ill., ports |
ISBN: | 9789814412520 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044638974 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2013 |||| o||u| ||||||eng d | ||
020 | |a 9789814412520 |c electronic bk. |9 978-981-4412-52-0 | ||
024 | 7 | |a 10.1142/8527 |2 doi | |
035 | |a (ZDB-124-WOP)00002999 | ||
035 | |a (OCoLC)874346421 | ||
035 | |a (DE-599)BVBBV044638974 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.88 |2 22 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Lauritzen, Niels |d 1964- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Undergraduate convexity |b from Fourier and Motzkin to Kuhn and Tucker |c Niels Lauritzen |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2013 | |
300 | |a xiv, 283 p. |b ill., ports | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point algorithm | ||
650 | 4 | |a Convex domains | |
650 | 4 | |a Convex functions | |
650 | 4 | |a Algebras, Linear | |
650 | 4 | |a Mathematical optimization | |
650 | 0 | 7 | |a Konvexe Funktion |0 (DE-588)4139679-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexität |0 (DE-588)4114284-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Menge |0 (DE-588)4165212-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Konvexität |0 (DE-588)4114284-6 |D s |
689 | 0 | 1 | |a Konvexe Menge |0 (DE-588)4165212-5 |D s |
689 | 0 | 2 | |a Konvexe Funktion |0 (DE-588)4139679-0 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814412513 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814452762 (pbk) |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/8527#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036946 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/8527#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178056459321344 |
---|---|
any_adam_object | |
author | Lauritzen, Niels 1964- |
author_facet | Lauritzen, Niels 1964- |
author_role | aut |
author_sort | Lauritzen, Niels 1964- |
author_variant | n l nl |
building | Verbundindex |
bvnumber | BV044638974 |
classification_rvk | SK 380 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00002999 (OCoLC)874346421 (DE-599)BVBBV044638974 |
dewey-full | 515.88 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.88 |
dewey-search | 515.88 |
dewey-sort | 3515.88 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02734nmm a2200541zc 4500</leader><controlfield tag="001">BV044638974</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814412520</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4412-52-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/8527</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00002999</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)874346421</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638974</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.88</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lauritzen, Niels</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Undergraduate convexity</subfield><subfield code="b">from Fourier and Motzkin to Kuhn and Tucker</subfield><subfield code="c">Niels Lauritzen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 283 p.</subfield><subfield code="b">ill., ports</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex domains</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexität</subfield><subfield code="0">(DE-588)4114284-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexität</subfield><subfield code="0">(DE-588)4114284-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814412513</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814452762 (pbk)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8527#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036946</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8527#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV044638974 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:57:54Z |
institution | BVB |
isbn | 9789814412520 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036946 |
oclc_num | 874346421 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiv, 283 p. ill., ports |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Lauritzen, Niels 1964- Verfasser aut Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker Niels Lauritzen Singapore World Scientific Pub. Co. c2013 xiv, 283 p. ill., ports txt rdacontent c rdamedia cr rdacarrier Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point algorithm Convex domains Convex functions Algebras, Linear Mathematical optimization Konvexe Funktion (DE-588)4139679-0 gnd rswk-swf Konvexität (DE-588)4114284-6 gnd rswk-swf Konvexe Menge (DE-588)4165212-5 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Konvexität (DE-588)4114284-6 s Konvexe Menge (DE-588)4165212-5 s Konvexe Funktion (DE-588)4139679-0 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 9789814412513 Erscheint auch als Druck-Ausgabe 9789814452762 (pbk) http://www.worldscientific.com/worldscibooks/10.1142/8527#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lauritzen, Niels 1964- Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker Convex domains Convex functions Algebras, Linear Mathematical optimization Konvexe Funktion (DE-588)4139679-0 gnd Konvexität (DE-588)4114284-6 gnd Konvexe Menge (DE-588)4165212-5 gnd |
subject_GND | (DE-588)4139679-0 (DE-588)4114284-6 (DE-588)4165212-5 (DE-588)4123623-3 |
title | Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker |
title_auth | Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker |
title_exact_search | Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker |
title_full | Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker Niels Lauritzen |
title_fullStr | Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker Niels Lauritzen |
title_full_unstemmed | Undergraduate convexity from Fourier and Motzkin to Kuhn and Tucker Niels Lauritzen |
title_short | Undergraduate convexity |
title_sort | undergraduate convexity from fourier and motzkin to kuhn and tucker |
title_sub | from Fourier and Motzkin to Kuhn and Tucker |
topic | Convex domains Convex functions Algebras, Linear Mathematical optimization Konvexe Funktion (DE-588)4139679-0 gnd Konvexität (DE-588)4114284-6 gnd Konvexe Menge (DE-588)4165212-5 gnd |
topic_facet | Convex domains Convex functions Algebras, Linear Mathematical optimization Konvexe Funktion Konvexität Konvexe Menge Lehrbuch |
url | http://www.worldscientific.com/worldscibooks/10.1142/8527#t=toc |
work_keys_str_mv | AT lauritzenniels undergraduateconvexityfromfourierandmotzkintokuhnandtucker |