Algebraic invariants of links:
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laure...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2012
|
Ausgabe: | 2nd ed |
Schriftenreihe: | K & E series on knots and everything
v. 52 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters - twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters |
Beschreibung: | xiv, 353 p. ill |
ISBN: | 9789814407397 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044638942 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2012 |||| o||u| ||||||eng d | ||
020 | |a 9789814407397 |c electronic bk. |9 978-981-4407-39-7 | ||
024 | 7 | |a 10.1142/8493 |2 doi | |
035 | |a (ZDB-124-WOP)00002747 | ||
035 | |a (OCoLC)874329491 | ||
035 | |a (DE-599)BVBBV044638942 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 514.224 |2 22 | |
100 | 1 | |a Hillman, Jonathan A. |d 1947- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Algebraic invariants of links |c Jonathan Hillman |
250 | |a 2nd ed | ||
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2012 | |
300 | |a xiv, 353 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a K & E series on knots and everything |v v. 52 | |
520 | |a This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters - twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters | ||
650 | 4 | |a Link theory | |
650 | 4 | |a Invariants | |
650 | 4 | |a Abelian groups | |
650 | 0 | 7 | |a Knotentheorie |0 (DE-588)4164318-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Knotentheorie |0 (DE-588)4164318-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814407380 (hbk.) |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9814407380 (hbk.) |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/8493#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036914 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/8493#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178056391163904 |
---|---|
any_adam_object | |
author | Hillman, Jonathan A. 1947- |
author_facet | Hillman, Jonathan A. 1947- |
author_role | aut |
author_sort | Hillman, Jonathan A. 1947- |
author_variant | j a h ja jah |
building | Verbundindex |
bvnumber | BV044638942 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00002747 (OCoLC)874329491 (DE-599)BVBBV044638942 |
dewey-full | 514.224 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.224 |
dewey-search | 514.224 |
dewey-sort | 3514.224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02621nmm a2200469zcb4500</leader><controlfield tag="001">BV044638942</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814407397</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4407-39-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/8493</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00002747</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)874329491</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638942</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.224</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hillman, Jonathan A.</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic invariants of links</subfield><subfield code="c">Jonathan Hillman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 353 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">K & E series on knots and everything</subfield><subfield code="v">v. 52</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters - twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Link theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abelian groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814407380 (hbk.)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9814407380 (hbk.)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8493#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036914</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8493#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044638942 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:54Z |
institution | BVB |
isbn | 9789814407397 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036914 |
oclc_num | 874329491 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiv, 353 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | K & E series on knots and everything |
spelling | Hillman, Jonathan A. 1947- Verfasser aut Algebraic invariants of links Jonathan Hillman 2nd ed Singapore World Scientific Pub. Co. c2012 xiv, 353 p. ill txt rdacontent c rdamedia cr rdacarrier K & E series on knots and everything v. 52 This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters - twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters Link theory Invariants Abelian groups Knotentheorie (DE-588)4164318-5 gnd rswk-swf Knotentheorie (DE-588)4164318-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789814407380 (hbk.) Erscheint auch als Druck-Ausgabe 9814407380 (hbk.) http://www.worldscientific.com/worldscibooks/10.1142/8493#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hillman, Jonathan A. 1947- Algebraic invariants of links Link theory Invariants Abelian groups Knotentheorie (DE-588)4164318-5 gnd |
subject_GND | (DE-588)4164318-5 |
title | Algebraic invariants of links |
title_auth | Algebraic invariants of links |
title_exact_search | Algebraic invariants of links |
title_full | Algebraic invariants of links Jonathan Hillman |
title_fullStr | Algebraic invariants of links Jonathan Hillman |
title_full_unstemmed | Algebraic invariants of links Jonathan Hillman |
title_short | Algebraic invariants of links |
title_sort | algebraic invariants of links |
topic | Link theory Invariants Abelian groups Knotentheorie (DE-588)4164318-5 gnd |
topic_facet | Link theory Invariants Abelian groups Knotentheorie |
url | http://www.worldscientific.com/worldscibooks/10.1142/8493#t=toc |
work_keys_str_mv | AT hillmanjonathana algebraicinvariantsoflinks |