The geometry of the octonions:
"There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions, and in fact, all symmetry groups are based on one of these four number systems. This book provides an el...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Co. Pte. Ltd.
c2015
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | "There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions, and in fact, all symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions."-- |
Beschreibung: | Title from PDF title page (viewed April 27, 2015) |
Beschreibung: | 1 online resource (xvii, 210 p.) ill |
ISBN: | 9789814401821 981440182X |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044638907 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2015 |||| o||u| ||||||eng d | ||
020 | |a 9789814401821 |9 978-981-4401-82-1 | ||
020 | |a 981440182X |9 981-4401-82-X | ||
024 | 7 | |a 10.1142/8456 |2 doi | |
035 | |a (ZDB-124-WOP)ocn785872360 | ||
035 | |a (OCoLC)988734374 | ||
035 | |a (DE-599)BVBBV044638907 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 512/.5 |2 23 | |
100 | 1 | |a Dray, Tevian |e Verfasser |4 aut | |
245 | 1 | 0 | |a The geometry of the octonions |c Tevian Dray, Corinne A. Manogue |
264 | 1 | |a Singapore |b World Scientific Publishing Co. Pte. Ltd. |c c2015 | |
300 | |a 1 online resource (xvii, 210 p.) |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from PDF title page (viewed April 27, 2015) | ||
520 | |a "There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions, and in fact, all symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions."-- | ||
650 | 4 | |a Cayley numbers (Algebra) | |
650 | 4 | |a Cayley algebras | |
650 | 4 | |a Nonassociative algebras | |
650 | 4 | |a Geometry, Algebraic | |
650 | 0 | 7 | |a Oktave |g Mathematik |0 (DE-588)4595894-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Oktave |g Mathematik |0 (DE-588)4595894-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Manogue, Corinne A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/8456#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036879 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/8456#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178056296792064 |
---|---|
any_adam_object | |
author | Dray, Tevian |
author_facet | Dray, Tevian |
author_role | aut |
author_sort | Dray, Tevian |
author_variant | t d td |
building | Verbundindex |
bvnumber | BV044638907 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)ocn785872360 (OCoLC)988734374 (DE-599)BVBBV044638907 |
dewey-full | 512/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.5 |
dewey-search | 512/.5 |
dewey-sort | 3512 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02560nmm a2200469zc 4500</leader><controlfield tag="001">BV044638907</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814401821</subfield><subfield code="9">978-981-4401-82-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981440182X</subfield><subfield code="9">981-4401-82-X</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/8456</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)ocn785872360</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)988734374</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638907</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dray, Tevian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The geometry of the octonions</subfield><subfield code="c">Tevian Dray, Corinne A. Manogue</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Co. Pte. Ltd.</subfield><subfield code="c">c2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 210 p.)</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed April 27, 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions, and in fact, all symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cayley numbers (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cayley algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonassociative algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Oktave</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4595894-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Oktave</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4595894-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manogue, Corinne A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8456#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036879</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8456#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044638907 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:54Z |
institution | BVB |
isbn | 9789814401821 981440182X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036879 |
oclc_num | 785872360 988734374 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | 1 online resource (xvii, 210 p.) ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | World Scientific Publishing Co. Pte. Ltd. |
record_format | marc |
spelling | Dray, Tevian Verfasser aut The geometry of the octonions Tevian Dray, Corinne A. Manogue Singapore World Scientific Publishing Co. Pte. Ltd. c2015 1 online resource (xvii, 210 p.) ill txt rdacontent c rdamedia cr rdacarrier Title from PDF title page (viewed April 27, 2015) "There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions, and in fact, all symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions."-- Cayley numbers (Algebra) Cayley algebras Nonassociative algebras Geometry, Algebraic Oktave Mathematik (DE-588)4595894-4 gnd rswk-swf Oktave Mathematik (DE-588)4595894-4 s 1\p DE-604 Manogue, Corinne A. Sonstige oth http://www.worldscientific.com/worldscibooks/10.1142/8456#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dray, Tevian The geometry of the octonions Cayley numbers (Algebra) Cayley algebras Nonassociative algebras Geometry, Algebraic Oktave Mathematik (DE-588)4595894-4 gnd |
subject_GND | (DE-588)4595894-4 |
title | The geometry of the octonions |
title_auth | The geometry of the octonions |
title_exact_search | The geometry of the octonions |
title_full | The geometry of the octonions Tevian Dray, Corinne A. Manogue |
title_fullStr | The geometry of the octonions Tevian Dray, Corinne A. Manogue |
title_full_unstemmed | The geometry of the octonions Tevian Dray, Corinne A. Manogue |
title_short | The geometry of the octonions |
title_sort | the geometry of the octonions |
topic | Cayley numbers (Algebra) Cayley algebras Nonassociative algebras Geometry, Algebraic Oktave Mathematik (DE-588)4595894-4 gnd |
topic_facet | Cayley numbers (Algebra) Cayley algebras Nonassociative algebras Geometry, Algebraic Oktave Mathematik |
url | http://www.worldscientific.com/worldscibooks/10.1142/8456#t=toc |
work_keys_str_mv | AT draytevian thegeometryoftheoctonions AT manoguecorinnea thegeometryoftheoctonions |