Spherical tensor operators: tables of matrix elements and symmetries
This book contains introductory comments concerning the definitions, the symmetry properties and the basic formulae for matrix elements of tensor operators. The main body of text consists of tables of reduced matrix elements of double tensor operators within pn, dn and fn configurations, i.e. all th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1990
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book contains introductory comments concerning the definitions, the symmetry properties and the basic formulae for matrix elements of tensor operators. The main body of text consists of tables of reduced matrix elements of double tensor operators within pn, dn and fn configurations, i.e. all the principal pure configurations of the atomic and nuclear structure. These tables are complete which means that the author has run through all the states of the following configurations: p2, p3, d2, d3, d4, d5, f2, f3, f4, f5, f6, f7 for multiparticle systems with central symmetry. Double tensor operators wk1k2 have been chosen in these calculations, for a number of reasons. First of all, they are the most general type of spherical tensor operators and, since they are normalized, they are the most convenient to use. Secondly, they have been very frequently used in many areas of physics, most notably in nuclear, atomic, molecular and solid state physics. There are also tabulated conversion factors to enable the use of these tables for other types of definitions of tensor operators |
Beschreibung: | 322 p |
ISBN: | 9789814368117 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044638726 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1990 |||| o||u| ||||||eng d | ||
020 | |a 9789814368117 |c electronic bk. |9 978-981-4368-11-7 | ||
024 | 7 | |a 10.1142/1143 |2 doi | |
035 | |a (ZDB-124-WOP)00005476 | ||
035 | |a (OCoLC)1005231083 | ||
035 | |a (DE-599)BVBBV044638726 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 539.725 |2 22 | |
084 | |a UM 1070 |0 (DE-625)145833: |2 rvk | ||
100 | 1 | |a Tuszynski, J. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spherical tensor operators |b tables of matrix elements and symmetries |c J.A. Tuszynski |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1990 | |
300 | |a 322 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This book contains introductory comments concerning the definitions, the symmetry properties and the basic formulae for matrix elements of tensor operators. The main body of text consists of tables of reduced matrix elements of double tensor operators within pn, dn and fn configurations, i.e. all the principal pure configurations of the atomic and nuclear structure. These tables are complete which means that the author has run through all the states of the following configurations: p2, p3, d2, d3, d4, d5, f2, f3, f4, f5, f6, f7 for multiparticle systems with central symmetry. Double tensor operators wk1k2 have been chosen in these calculations, for a number of reasons. First of all, they are the most general type of spherical tensor operators and, since they are normalized, they are the most convenient to use. Secondly, they have been very frequently used in many areas of physics, most notably in nuclear, atomic, molecular and solid state physics. There are also tabulated conversion factors to enable the use of these tables for other types of definitions of tensor operators | ||
650 | 4 | |a Matrices / Tables | |
650 | 4 | |a Symmetry (Physics) / Tables | |
650 | 4 | |a Racah algebra | |
650 | 4 | |a Calculus of tensors | |
650 | 0 | 7 | |a Unitäre Gruppe |0 (DE-588)4261524-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrie |0 (DE-588)4058724-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tabelle |0 (DE-588)4184303-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tensor |0 (DE-588)4184723-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Unitäre Gruppe |0 (DE-588)4261524-0 |D s |
689 | 0 | 1 | |a Tensor |0 (DE-588)4184723-4 |D s |
689 | 0 | 2 | |a Tabelle |0 (DE-588)4184303-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |D s |
689 | 1 | 1 | |a Tabelle |0 (DE-588)4184303-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Symmetrie |0 (DE-588)4058724-1 |D s |
689 | 2 | 1 | |a Tabelle |0 (DE-588)4184303-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810202835 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810202830 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/1143#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036699 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/1143#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178055925596160 |
---|---|
any_adam_object | |
author | Tuszynski, J. A. |
author_facet | Tuszynski, J. A. |
author_role | aut |
author_sort | Tuszynski, J. A. |
author_variant | j a t ja jat |
building | Verbundindex |
bvnumber | BV044638726 |
classification_rvk | UM 1070 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00005476 (OCoLC)1005231083 (DE-599)BVBBV044638726 |
dewey-full | 539.725 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539.725 |
dewey-search | 539.725 |
dewey-sort | 3539.725 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03574nmm a2200637zc 4500</leader><controlfield tag="001">BV044638726</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814368117</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4368-11-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/1143</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00005476</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005231083</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638726</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539.725</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UM 1070</subfield><subfield code="0">(DE-625)145833:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tuszynski, J. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spherical tensor operators</subfield><subfield code="b">tables of matrix elements and symmetries</subfield><subfield code="c">J.A. Tuszynski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">322 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book contains introductory comments concerning the definitions, the symmetry properties and the basic formulae for matrix elements of tensor operators. The main body of text consists of tables of reduced matrix elements of double tensor operators within pn, dn and fn configurations, i.e. all the principal pure configurations of the atomic and nuclear structure. These tables are complete which means that the author has run through all the states of the following configurations: p2, p3, d2, d3, d4, d5, f2, f3, f4, f5, f6, f7 for multiparticle systems with central symmetry. Double tensor operators wk1k2 have been chosen in these calculations, for a number of reasons. First of all, they are the most general type of spherical tensor operators and, since they are normalized, they are the most convenient to use. Secondly, they have been very frequently used in many areas of physics, most notably in nuclear, atomic, molecular and solid state physics. There are also tabulated conversion factors to enable the use of these tables for other types of definitions of tensor operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices / Tables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry (Physics) / Tables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Racah algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of tensors</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unitäre Gruppe</subfield><subfield code="0">(DE-588)4261524-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tabelle</subfield><subfield code="0">(DE-588)4184303-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tensor</subfield><subfield code="0">(DE-588)4184723-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unitäre Gruppe</subfield><subfield code="0">(DE-588)4261524-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Tensor</subfield><subfield code="0">(DE-588)4184723-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Tabelle</subfield><subfield code="0">(DE-588)4184303-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Tabelle</subfield><subfield code="0">(DE-588)4184303-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Tabelle</subfield><subfield code="0">(DE-588)4184303-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810202835</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810202830</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/1143#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036699</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/1143#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044638726 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:54Z |
institution | BVB |
isbn | 9789814368117 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036699 |
oclc_num | 1005231083 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | 322 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Tuszynski, J. A. Verfasser aut Spherical tensor operators tables of matrix elements and symmetries J.A. Tuszynski Singapore World Scientific Pub. Co. c1990 322 p txt rdacontent c rdamedia cr rdacarrier This book contains introductory comments concerning the definitions, the symmetry properties and the basic formulae for matrix elements of tensor operators. The main body of text consists of tables of reduced matrix elements of double tensor operators within pn, dn and fn configurations, i.e. all the principal pure configurations of the atomic and nuclear structure. These tables are complete which means that the author has run through all the states of the following configurations: p2, p3, d2, d3, d4, d5, f2, f3, f4, f5, f6, f7 for multiparticle systems with central symmetry. Double tensor operators wk1k2 have been chosen in these calculations, for a number of reasons. First of all, they are the most general type of spherical tensor operators and, since they are normalized, they are the most convenient to use. Secondly, they have been very frequently used in many areas of physics, most notably in nuclear, atomic, molecular and solid state physics. There are also tabulated conversion factors to enable the use of these tables for other types of definitions of tensor operators Matrices / Tables Symmetry (Physics) / Tables Racah algebra Calculus of tensors Unitäre Gruppe (DE-588)4261524-0 gnd rswk-swf Symmetrie (DE-588)4058724-1 gnd rswk-swf Matrix Mathematik (DE-588)4037968-1 gnd rswk-swf Tabelle (DE-588)4184303-4 gnd rswk-swf Tensor (DE-588)4184723-4 gnd rswk-swf Unitäre Gruppe (DE-588)4261524-0 s Tensor (DE-588)4184723-4 s Tabelle (DE-588)4184303-4 s 1\p DE-604 Matrix Mathematik (DE-588)4037968-1 s 2\p DE-604 Symmetrie (DE-588)4058724-1 s 3\p DE-604 Erscheint auch als Druck-Ausgabe 9789810202835 Erscheint auch als Druck-Ausgabe 9810202830 http://www.worldscientific.com/worldscibooks/10.1142/1143#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tuszynski, J. A. Spherical tensor operators tables of matrix elements and symmetries Matrices / Tables Symmetry (Physics) / Tables Racah algebra Calculus of tensors Unitäre Gruppe (DE-588)4261524-0 gnd Symmetrie (DE-588)4058724-1 gnd Matrix Mathematik (DE-588)4037968-1 gnd Tabelle (DE-588)4184303-4 gnd Tensor (DE-588)4184723-4 gnd |
subject_GND | (DE-588)4261524-0 (DE-588)4058724-1 (DE-588)4037968-1 (DE-588)4184303-4 (DE-588)4184723-4 |
title | Spherical tensor operators tables of matrix elements and symmetries |
title_auth | Spherical tensor operators tables of matrix elements and symmetries |
title_exact_search | Spherical tensor operators tables of matrix elements and symmetries |
title_full | Spherical tensor operators tables of matrix elements and symmetries J.A. Tuszynski |
title_fullStr | Spherical tensor operators tables of matrix elements and symmetries J.A. Tuszynski |
title_full_unstemmed | Spherical tensor operators tables of matrix elements and symmetries J.A. Tuszynski |
title_short | Spherical tensor operators |
title_sort | spherical tensor operators tables of matrix elements and symmetries |
title_sub | tables of matrix elements and symmetries |
topic | Matrices / Tables Symmetry (Physics) / Tables Racah algebra Calculus of tensors Unitäre Gruppe (DE-588)4261524-0 gnd Symmetrie (DE-588)4058724-1 gnd Matrix Mathematik (DE-588)4037968-1 gnd Tabelle (DE-588)4184303-4 gnd Tensor (DE-588)4184723-4 gnd |
topic_facet | Matrices / Tables Symmetry (Physics) / Tables Racah algebra Calculus of tensors Unitäre Gruppe Symmetrie Matrix Mathematik Tabelle Tensor |
url | http://www.worldscientific.com/worldscibooks/10.1142/1143#t=toc |
work_keys_str_mv | AT tuszynskija sphericaltensoroperatorstablesofmatrixelementsandsymmetries |