Harmonic analysis method for nonlinear evolution equations, I:
This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrodinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those...
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2011
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrodinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students |
Beschreibung: | xiv, 283 p |
ISBN: | 9789814360746 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044638669 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814360746 |c electronic bk. |9 978-981-4360-74-6 | ||
024 | 7 | |a 10.1142/8209 |2 doi | |
035 | |a (ZDB-124-WOP)00002192 | ||
035 | |a (OCoLC)1074805494 | ||
035 | |a (DE-599)BVBBV044638669 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.2433 |2 22 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
245 | 1 | 0 | |a Harmonic analysis method for nonlinear evolution equations, I |c Baoxiang Wang ... [et al.] |
246 | 1 | 3 | |a Harmonic analysis method for nonlinear evolution equations, one |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2011 | |
300 | |a xiv, 283 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrodinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students | ||
650 | 4 | |a Evolution equations, Nonlinear | |
650 | 4 | |a Harmonic analysis | |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Evolutionsgleichung |0 (DE-588)4221363-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Evolutionsgleichung |0 (DE-588)4221363-0 |D s |
689 | 0 | 1 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Wang, Baoxiang |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814360739 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9814360732 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/8209#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036643 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/8209#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178055785086976 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV044638669 |
classification_rvk | SK 540 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00002192 (OCoLC)1074805494 (DE-599)BVBBV044638669 |
dewey-full | 515.2433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.2433 |
dewey-search | 515.2433 |
dewey-sort | 3515.2433 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02450nmm a2200481zc 4500</leader><controlfield tag="001">BV044638669</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814360746</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4360-74-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/8209</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00002192</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1074805494</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638669</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.2433</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic analysis method for nonlinear evolution equations, I</subfield><subfield code="c">Baoxiang Wang ... [et al.]</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Harmonic analysis method for nonlinear evolution equations, one</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 283 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrodinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution equations, Nonlinear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Evolutionsgleichung</subfield><subfield code="0">(DE-588)4221363-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Evolutionsgleichung</subfield><subfield code="0">(DE-588)4221363-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Baoxiang</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814360739</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9814360732</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8209#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036643</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8209#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044638669 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:53Z |
institution | BVB |
isbn | 9789814360746 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036643 |
oclc_num | 1074805494 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiv, 283 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Harmonic analysis method for nonlinear evolution equations, I Baoxiang Wang ... [et al.] Harmonic analysis method for nonlinear evolution equations, one Singapore World Scientific Pub. Co. c2011 xiv, 283 p txt rdacontent c rdamedia cr rdacarrier This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrodinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students Evolution equations, Nonlinear Harmonic analysis Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Nichtlineare Evolutionsgleichung (DE-588)4221363-0 gnd rswk-swf Nichtlineare Evolutionsgleichung (DE-588)4221363-0 s Harmonische Analyse (DE-588)4023453-8 s 1\p DE-604 Wang, Baoxiang Sonstige oth Erscheint auch als Druck-Ausgabe 9789814360739 Erscheint auch als Druck-Ausgabe 9814360732 http://www.worldscientific.com/worldscibooks/10.1142/8209#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Harmonic analysis method for nonlinear evolution equations, I Evolution equations, Nonlinear Harmonic analysis Harmonische Analyse (DE-588)4023453-8 gnd Nichtlineare Evolutionsgleichung (DE-588)4221363-0 gnd |
subject_GND | (DE-588)4023453-8 (DE-588)4221363-0 |
title | Harmonic analysis method for nonlinear evolution equations, I |
title_alt | Harmonic analysis method for nonlinear evolution equations, one |
title_auth | Harmonic analysis method for nonlinear evolution equations, I |
title_exact_search | Harmonic analysis method for nonlinear evolution equations, I |
title_full | Harmonic analysis method for nonlinear evolution equations, I Baoxiang Wang ... [et al.] |
title_fullStr | Harmonic analysis method for nonlinear evolution equations, I Baoxiang Wang ... [et al.] |
title_full_unstemmed | Harmonic analysis method for nonlinear evolution equations, I Baoxiang Wang ... [et al.] |
title_short | Harmonic analysis method for nonlinear evolution equations, I |
title_sort | harmonic analysis method for nonlinear evolution equations i |
topic | Evolution equations, Nonlinear Harmonic analysis Harmonische Analyse (DE-588)4023453-8 gnd Nichtlineare Evolutionsgleichung (DE-588)4221363-0 gnd |
topic_facet | Evolution equations, Nonlinear Harmonic analysis Harmonische Analyse Nichtlineare Evolutionsgleichung |
url | http://www.worldscientific.com/worldscibooks/10.1142/8209#t=toc |
work_keys_str_mv | AT wangbaoxiang harmonicanalysismethodfornonlinearevolutionequationsi AT wangbaoxiang harmonicanalysismethodfornonlinearevolutionequationsone |